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Abstract

This paper presents a probabilistic method for correspondence matching with a frame-
work of the random walk with restart (RWR). The matching cost is reformulated as a
corresponding probability, which enables the RWR to be utilized for matching the cor-
respondences. There are mainly two advantages in our method. First, the proposed
method guarantees the non-trivial steady-state solution of a given initial matching prob-
ability due to the restarting term in the RWR. It means the number of iteration, a crucial
parameter which influences the performance of algorithm, is not needed in contrast to
the conventional methods. This gives the consistent results regardless of the evolution
time. Second, only an adjacent neighborhood is considered when the matching prob-
abilities are inferred, which lowers the computational complexity while not sacrificing
performance. Experimental results show that the performance of the proposed method is
competitive to that of state-of-the-art methods both qualitatively and quantitatively.

1 Introduction
It is important to find correspondences between images in the field of computer vision, thus
lots of solutions have been proposed to address this problem. There are mainly two classes
(global methods and local methods) in correspondences matching [1]. Global methods find
the corresponding point, a globally optimal solution of an energy functional [2, 3, 4], in
which the smoothness assumption is explicitly leveraged. Local methods compute corre-
lation between points within a matching window with an assumption that all pixels in a
matching window have a similar disparity. This implies that an appropriate size and a shape
of the window significantly influence the performance of local methods [5, 6]. There have
been many approaches for alleviating this problem. Fusiello and Roberto proposed the multi-
window method which chooses the best window among pre-defined ones [5]. Kanade and
Okutomi used an adaptive window in order to localize only relevant disparities [6]. How-
ever, it cannot localize well at depth discontinuities due to the rectangular window shape,
which results in the foreground fatting effect. Yoon and Kweon proposed an adaptive weight
method [7]. A support weight at each point was computed according to the color and spa-
tial distances between points. Then, the bilateral filtering [8] was performed to aggregate
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(a) Adaptive weight (AW) [7] (b) Cost filter (CF) [12]

(c) Anisotropic diffusion (AD) [9] (d) Geodesic diffusion (GD) [13] (e) The proposed method

Figure 1: Disparity estimation results with the same neighborhood, i.e., 4-neighborhood, in
cost aggregation. (a) Adaptive weight (AW) [7], (b) Cost filter (CF) [12], (c) Anisotropic
diffusion (AD) [9], (d) Geodesic diffusion (GD) [13] and (e) The proposed method. The
proposed method gives non-trivial steady-state solution of each matching probability plane,
which means there is no need to consider an optimal window size. The percentages of
bad matching error of (a)-(e) are 3.43, 3.24, 3.85, 2.96, and 1.97, respectively [21]. The
comparative computation times of (a)-(e) are 2.87, 1.18, 0.93, 2.19, and 1.0, respectively,
when the computation time of the proposed method is normalized to 1.0.

an initial matching cost. The performance of adaptive weight method is comparable to that
of other global methods. However, it causes high complexity due to the large window size.
Many methods have been proposed to reduce the complexity of adaptive weight method,
while not sacrificing high performance [9, 10, 11, 12, 13]. Min and Sohn presented the
multi-scale approach in both an image and a cost domain [9]. Richardt et al. [10] used the
bilateral grid [14] to reduce the complexity of adaptive weight method [7]. Rhemann et
al. applied guided filter [15], an alternative to the bilateral filter [8], to cost aggregation by
leveraging that it preserves the edges well and computation time is invariant to the window
size [12] . Recently, De-Maeztu and Villanueva presented a diffusion-based correspondence
matching in which the computed weights as well as the costs were diffused so as to lower
the computational cost [13]. While most methods have concentrated on reducing the image
resolution and on modifying the window size and/or the shape, Min et al. accelerated the
matching speed by compressing a search range space and sampling points in the matching
window [11].

In this paper, we propose a probabilistic method for correspondence matching with a
framework of the random walk with restart (RWR). The matching cost is viewed of as a
probability of being matched between points, which enables the RWR to be utilized for
matching the correspondences. The significance of our work is as follows. First, only an
adjacent neighborhood is needed to infer the matching probability, which reduces the com-
plexity of algorithm. Second, the proposed method gives steady-state distribution of each
matching probability, and it could be an alternative to other existing optimization techniques
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such as dynamic programming [2], graph cuts [3], and belief propagation [4]. Figure 1 shows
that the performance of the proposed method is superior to that of state-of-the-art methods
within a same configuration.

There was an attempt to apply the RW theory to the correspondence matching. Shen at
al. inferred the disparity map by finding a minimum of a given energy functional via the RW
[16, 17]. However, the RW framework does not give a meaningful solution in a steady-state
as will be explained later, which results in a noisy result in textureless region.

The remainder of this paper is organized as follows. In section 2, we formalize the
matching problem as a probability inferring process and describe the proposed method in
section 3. Experimental results are presented in section 4. Finally, we conclude the paper in
section 5.

2 Motivation
Local methods are mainly composed of three steps [1]: matching cost computation, cost
aggregation, and disparity computation. Let us assume that stereo images are rectified and a
truncated absolute difference (TAD) is used to compute the matching cost. Then, each step
is represented as follows:

Matching cost computation: e0(x,d) = min(‖IR(x)− IT (x,d)‖1,σ) (1)

Cost aggregation: en+1(x,d) =
∑y∈N w(x,y)en(y,d)

∑y∈N w(x,y)
(2)

Disparity computation: d(x) = argmin
d∈[d1,...,dD]

eN(x,d) (3)

where x = [x,y]T and d = [d,0]T represent the position and disparity vector, respectively.
The weight between x and y is defined as w(x,y). First, an initial matching cost e0(x,d) is
computed by an absolute difference between points on the reference image IR(x) and on the
‘d’-shifted target image IT (x,d) with the threshold σ as in Equation 1. Then, in Equation 2,
the cost en(x,d) is iteratively aggregated with y ∈ N where N is the neighborhood of x.
Finally, an optimal disparity d(x) is selected within a search range D for the aggregated cost
eN(x,d) after the maximum iteration N, by winner-takes-all (WTA) as in Equation 3.

This procedure can be re-formulated as follows [11]:

Matching probability computation: p0(x,d) = max(σ −‖IR(x)− IT (x,d)‖1,0) (4)

Probability inference: pn+1(x,d) =
∑y∈N w(x,y)pn(y,d)

∑y∈N w(x,y)
(5)

Disparity computation: d(x) = argmax
d∈[d1,...,dD]

pN(x,d) (6)

Then, the matching cost e0(x,d) can then be regarded as a likelihood p0(x,d) of be-
ing matched between points as in Equation 4, i.e., a likelihood p0(x,d) is a probability that
the corresponding point of reference pixel x is the ‘d’-shifted point of target image, and
is inversely proportional to the matching cost e0(x,d). Accordingly, aggregating the cost
en+1(x,d) with an initial matching cost e0(x,d) can be re-formulated as inferring the proba-
bility pn+1(x,d) with an initial matching probability p0(x,d).
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3 Probabilistic Correspondence Matching with RWR

3.1 Problem statement
In section 2, a correspondence matching problem was formulated as a probability inferring
problem. The object is then to find an optimal matching probability pN(x,d) for a given
initial matching probability p0(x,d).

The random walk theory (RW) has been widely used to optimize probabilistic problems
[16, 18, 19, 20]. It has been known that the RW and the Laplace equation give the same
solution, which means that the steady-state of a given energy functional can be captured by
the RW [18]. However, the steady-state solution of the RW gives no meaningful information.
Formally, the right eigenvector corresponding to the largest eigenvalue of W in Equation 9
is constant, i.e., the steady-state solution of the RW is a constant signal.

Let us consider a problem of inferring an optimal probability as in Equation 5. Inferring a
probability with a small neighborhood, i.e., 4-neighborhood, is the same as a procedure of the
RW [18], which means the adaptive weight method, a variation of Equation 2 or Equation 5,
does not provide a meaningful steady-state solution similar to the RW. Note that Equation 2
becomes the multi-window method [5], the adaptive window method [6], and the adaptive
weight method [7] according to the weight function w(x,y) and/or the neighborhood N .
Thus, in conventional methods, the number of iteration should be specified in advance and it
significantly influences the performance of algorithms [7, 9, 10, 11, 12]. Recently, the RWR
has become increasingly popular, since its restarting term gives the meaningful information
in a steady-state, allowing it to consider the global relation at all scales [19]. Therefore, we
infer the optimal matching probability pN(x,d) via the RWR in contrast to the conventional
methods which are based on the RW such as the adaptive weight [7] and the diffusion based
method [13]. Note that the RW and the anisotropic diffusion are also closely related to each
other [18].

3.2 Graph model
Consider an initial matching probability as an undirected graph G = (V,E) with nodes V and
edges E. Each node vi ∈V indicates a point at xi ∈ {x1, ...,xM} in an initial matching proba-
bility where M is the size of reference image. The adjacent nodes vi and v j are connected to
an edge ei j ∈ E. The graph assigns a weight to each edge and the weight is computed in the
reference image. With an assumption that neighboring pixels tend to have similar disparity
values when their color distance is small, the edge weight is computed as follows:

wi j = exp

(
−
∥∥IR (xi)− IR (x j)

∥∥2
2

γc

)
(7)

where γc represents the color variance. IR(xi) and IR(x j) represent an intensity of reference
image at xi and x j in Lab color space, respectively.

3.3 Probability inference
With a weighted graph, a probability in a steady-state can be inferred via the RWR. A random
walker, with an initial position x j, iteratively transits to its neighboring points according to
the edge weight as in Equation 7 until it reaches to the reference position xi. Also, the
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random walker goes back to the initial position x j with the restarting probability at each
iteration. The RWR is formulated in an iterative manner as follows [20]:

Pk
n+1 = (1−α)D−1WPk

n +αPk
0

= (1−α)WPk
n +αPk

0
(8)

where Pk
n = [pn(xi,dk)]M×1 denotes an initial matching probability when the number of itera-

tion is n. The restarting probability is represented as α . The adjacency matrix W = [wi j]M×M
is normalized as W = D−1W, where D = diag(D1, ...,DM), and Di = ∑

M
j=1 wi j. When the

solution reaches to the steady-state, Pk
n and Pk

n+1 become identical, i.e., the energy transition
with respect to time approaches 0. Therefore, Equation 8 can be reformulated as follows:

Pk
s = (1−α)WPk

s +αPk
0

= α(I− (1−α)W)−1Pk
0

= RPk
0

(9)

where Pk
s is a matching probability in a steady-state. R can be interpreted as affinity scores

between points in an initial state Pk
0. We can see that all paths are considered when Pk

s is
computed. Furthermore, R can be re-formulated as an infinite geometric series:

R = α(I− (1−α)W)−1

= α ∑
∞
n=0 (1−α)nWn (10)

That is, R is a weighted sum of Wn, whose element wn
i j is a probability that a random

walker transits x j to xi after n iterations. The iteration n denotes a scale of the transition,
e.g., the random walker transits farther as n becomes larger [19]. Accordingly, the RWR
optimizes an initial matching probability by considering all paths between two points at all
scales. It might seem that the complexity of the proposed method is high since the matrix
inversion requires O(M3) operation. However, we use only an adjacent neighborhood, i.e.,
4-neighborhood, which makes R sparse. Thus, the matrix inversion can be computed with
low complexity.

With a steady-state probability, a disparity can be simply selected by WTA strategy as
follows:

d(xi) = argmax
dk

ps(xi,dk) (11)

where ps(xi,dk) is an optimized steady-state probability obtained in Equation 9, and dk ∈
{d1, ...,dD}.

The correspondence matching within the RWR framework has the following advantages:
1) A non-trivial steady-state solution is guaranteed by constraining a steady-state probabil-
ity to an initial matching probability to some extent, which means that it is not needed to
specify the number of iteration. In conventional methods, it is crucial to specify the number
of iteration since the performance and the computation time largely depends on this param-
eter [9, 13]. 2) The global relationship between points or the steady-state solution can be
captured by using an adjacent neighborhood only, which lowers the complexity of algorithm
while maintaining the performance. Accordingly, the proposed method gives high quality
matching performance in a semi-global manner with low complexity.
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(a) Initial probability p0(x,0) (b) Adaptive weight (AW) [7] (c) Cost filter (CF) [12]

(d) Anisotropic diffusion (AD) [9] (e) Geodesic diffusion (GD) [13] (f) The proposed method

Figure 2: An inferred matching probability in ‘Tsukuba’ image when the candidate of dis-
parity is 0. (a) An initial matching probability p0(x,0), (b) Adaptive weight (AW) [7], (b)
Cost filter (CF) [12], (c) Anisotropic diffusion (AD) [9], (d) Geodesic diffusion (GD) [13],
and (e) The proposed method. The low intensity indicates high probability of being matched,
and vice versa.

4 Experimental Results
In order to verify the performance, the proposed method was compared with state-of-the-
art local methods: the adaptive weight (AW) [7], the cost filter (CF) [12], the anisotropic
diffusion (AD) [9], and the geodesic diffusion (GD) [13]. Note that the AD is not a main
proposal of [9], but just a part of their method. We used a TAD of color image IR and IT , and
a gradient value of gray image IR

′ and IT
′ as an initial matching probability as follows:

p0(x,d) = λ ·max(σ1−‖IR(x)− IT (x,d)‖1,0) (12)

+(1−λ ) ·max
(
σ2−

∥∥∇xIR
′(x)−∇xIT

′(x,d)
∥∥

1,0
)

where ∇x denotes the gradient operator along a horizontal direction. λ controls the leverage
between a color and a gradient term. It was set to 0.11 and truncation values σ1 and σ2
were set to 15 and 2, respectively. For the post processing, left-right consistency check and
a weighted median filter were applied [12].

Since the performance of conventional methods largely depend on the window size and
parameters, they were carefully set through intensive experiments. The window size of the
AW and CF was set to 35× 35 and 19× 19, respectively. The AD, GD and the proposed
method used 4-neighborhood. For the AD, the number of iteration was set to 100 with the
step size being 0.01. In the GD, the number of iteration was set to 18 [13]. In our algorithm,
the color variance γc and the restarting probability α was set to 50 and 0.003, respectively.
The results of the CF were simulated with a source code provided by the author [12].

Figure 2 shows an initial matching probability p0(x,0) and an inferred probability map
when the candidate of disparity is 0. The AW shows a higher performance than the CF
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Algorithm Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

AW [7] 2.43 2.77 11.6 0.24 0.46 2.45 7.90 13.2 17.8 3.36 8.60 8.29
AW [7]* 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26
CF [12] 1.76 2.14 8.34 0.19 0.46 2.51 6.24 11.5 16.0 2.48 8.01 7.20

CF [12]* 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66
AD [9] 2.93 3.85 11.6 1.09 1.78 11.9 8.78 14.2 19.9 3.19 8.83 9.13

GD [13] 2.39 2.96 11.5 0.25 0.45 3.31 7.28 12.4 17.7 3.12 8.65 8.98
GD [13]* 1.88 2.35 7.64 0.38 0.82 3.02 5.99 11.3 13.3 2.84 8.33 8.09

Proposed method 1.60 1.97 6.44 0.20 0.38 2.51 6.15 11.5 15.8 2.60 7.92 7.48
AW: adaptive weight [7], CF: cost filter [12], AD: anisotropic diffusion [9], GD: geodesic diffusion [13]

Table 1: Object evaluation for the proposed method

in edge-preserve smoothing. However, in both methods, a non-smoothed texture region is
observed, which results in a noisy disparity map. The GD shows better performance than
the AD, and localizes the probability map well. However, both methods do not preserve the
boundary, which causes the artifacts at depth discontinuities. In our method, a texture region
is effectively smoothed as well as the boundary is well-preserved.

Figure 3 compares the performance of the proposed method with that of state-of-the-
art methods in Middlebury test bed [21]: ‘Tsukuba’, ‘Venus’, ‘Teddy’, and ‘Cones’. Even
though the proposed method uses a 4-neighborhood in inferring the matching probability,
high quality disparity maps are provided which are competitive to other methods. Also,
the results of the proposed method show high performance at depth boundaries. For an
object comparison, we evaluated the proposed method with respect to the three criteria:
non-occluded region (nonocc), all region (all), and discontinuous region (disc) as shown in
Table 1. The symbol ‘*’ indicates the results at the Middlebury test bed [21]. It shows that
the proposed method shows competitive results with state-of-the-art methods. Noting that
disc criterion evaluates the performance only at depth discontinuities, we can see a coherent
results with a boundary preserving capacity of the proposed method and other methods as
shown in Figure 2 and Figure 3. The comparison of a computation time is shown in Figure 4a.
Note that the computation time of the proposed method was normalized to 1.0. Due to
the large window size, the AW shows the slowest computation time. The AD shows the
fastest results, but its performance is quiet inferior to other methods. In spite of matrix
inversion, the proposed method ranks second since the matrix is sparse. In conclusion, the
proposed method shows competitiveness to state-of-the art methods both qualitatively and
quantitatively. In order to compare the performance in case of a similar window size, we
conducted another experiment by changing a window size of the AW and CF to 3×3 which
is the similar to that used in the AD, GD and the proposed method, i.e., 4-neighborhood.
Figure 1a and Figure 1b show the results of the AW and CF, which implies that the results
of these methods heavily depend on the window size. Figure 4b shows the corresponding
computation time. It shows that the AW becomes faster since the small window was used.
Note that the computation time of the CF does not change since only O(1) operation is
needed in the guided filter [15]. However, its performance heavily depends on the window
size by comparing the result in Figure 1b with that in Figure 3d.

In our approach, the restarting probability α is an important parameter since it is related
to the degree of smoothing of an initial matching probability. The results obtained by chang-
ing α are shown in Figure 5. More smoothed result is shown as α becomes smaller, which
implies that a random walker rarely returns to the initial position. As we mentioned before,
the solution becomes trivial (i.e. a grey image) if the restarting probability approaches to 0,
i.e. the RW, as shown in Figure 5d.

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



8 C. OH, B. HAM, K. SOHN: PROBABILISTIC CORRESPONDENCE MATCHING

(a) Reference image

(b) Ground truth

(c) Adaptive weight (AW) [7]

(d) Cost filter (CF) [12]

(e) Anisotropic diffusion (AD) [9]

(f) Geodesic diffusion (GD) [13]

(g) The proposed method

Figure 3: Results for (from left to right) ‘Tsukuba’, ‘Venus’, ‘Teddy’, and ‘Cones’. (a)
Reference image, (b) Ground truth, (c) Adaptive weight (AW) [7], (f) Cost filter (CF) [12],
(d) Anisotropic diffusion (AD) [9], (e) Geodesic diffusion (GD) [13], and (g) The proposed
method.
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Figure 4: The computation time of disparity estimation with (a) an optimal window and (b)
the smallest window. Note that the computation time of the proposed method is normalized
to 1.0.

(a) (b) (c) (d)

Figure 5: Disparity estimation results of the proposed method when the restarting probability
α is (a) 3×10−1, (b) 3×10−3, (c) 3×10−5, and (d) 3×10−7.

5 Conclusion
We have presented a probabilistic method for correspondence matching via the RWR frame-
work by formulating the cost aggregation as a probability inferring problem. It gives the
non-trivial steady-state solution with leveraging an adjacent neighborhood only. Therefore,
the proposed method shows high performance with low complexity. In order to verify our
approach, the accuracy of matching results and computation time are evaluated. We will
accelerate the proposed method further by applying a fast solver for calculating the matrix
inversion. Furthermore, since the matching probability of each candidate of disparity is in-
ferred in an independent manner, it is feasible that the proposed method can be accelerated
by utilizing this parallel architecture via GPU.
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