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Abstract— In this paper, a probability-based rendering (PBR)
method is described for reconstructing an intermediate view with
a steady-state matching probability (SSMP) density function.
Conventionally, given multiple reference images, the intermediate
view is synthesized via the depth image-based rendering tech-
nique in which geometric information (e.g., depth) is explicitly
leveraged, thus leading to serious rendering artifacts on the
synthesized view even with small depth errors. We address this
problem by formulating the rendering process as an image fusion
in which the textures of all probable matching points are adap-
tively blended with the SSMP representing the likelihood that
points among the input reference images are matched. The PBR
hence becomes more robust against depth estimation errors than
existing view synthesis approaches. The MP in the steady-state,
SSMP, is inferred for each pixel via the random walk with restart
(RWR). The RWR always guarantees visually consistent MP,
as opposed to conventional optimization schemes (e.g., diffusion
or filtering-based approaches), the accuracy of which heavily
depends on parameters used. Experimental results demonstrate
the superiority of the PBR over the existing view synthesis
approaches both qualitatively and quantitatively. Especially, the
PBR is effective in suppressing flicker artifacts of virtual video
rendering although no temporal aspect is considered. Moreover,
it is shown that the depth map itself calculated from our RWR-
based method (by simply choosing the most probable matching
point) is also comparable with that of the state-of-the-art local
stereo matching methods.

Index Terms— Image-based rendering (IBR), view interpola-
tion, correspondence matching, image fusion, random walk with
restart (RWR).

I. INTRODUCTION

IN CONTRAST to the conventional TV, three-dimensional
(3D) TV aims to provide a user with an immersive 3D

perception and interactivity. The viewer can perceive 3D
impression throughout a 3D display with or without wearing
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glasses, and change the viewpoint according to an individual
preference. By passing through the development phase, 3D TV
has been successfully deployed on commercial markets, and
is spotlighted as the core equipment of the next generation
broadcasting system. To make 3D TV come into a wide use,
however, there are still some challenges to be addressed.

First, most 3D contents have been made without reflect-
ing the characteristics of the human visual system (HVS).
On the one hand, a stereo sequence captured with a baseline
longer than a pupil distance might have an excessive depth
perception beyond the fusion range of the HVS, and incurs
a conflict between convergence and accommodation, resulting
in a severe eye strain and visual discomfort to viewers. On the
other hand, the stereo video with a reduced baseline contains a
3D depth percept lower than the threshold of the just notice-
able depth difference (JNDD) [1]. Besides, each individual
may have different range of fusing a 3D perception and thus,
it is needed to reconstruct virtual sequences according to the
user preference for the degree of depth percept [2]. Second,
an advanced compression scheme is essential to efficiently
utilize a limited bandwidth and data storage. One alternative
is to transmit a stream of images and their associated depth
information followed by generating virtual views of 3D scenes
at the receiver.

To address these challenges, one of the most important
technologies is to synthesize intermediate views with two or
more images captured at different viewpoints. Many methods
have been proposed in the field of image-based rendering
(IBR) for visualizing 3D scenes and objects in a realistic
way. Depth image-based rendering (DIBR) is one of the
most significant technologies in the IBR, and has been under
active development for the next generation TV system [3].
In DIBR, the texture corresponding to the virtual view is
re-sampled from available reference images by using depth
maps [4]. Thus, inaccurate depth information degrades the
quality of the synthesized view, especially around depth dis-
continuities. Though a number of methods have been pro-
posed for mitigating visual artifacts on synthesized views
by using pre-/post-processing or distortion metric [5], [6],
there are certain limitations due to errors that inherently
exist on depth maps (usually determined by hard decision in
correspondence matching). When it comes to video rendering,
such artifacts become even more serious due to annoying
flickers.

This paper presents a novel method that effectively han-
dles such rendering artifacts from erroneous depth data by
formulating the rendering process as a probabilistic fusion
framework. In the next section, we describe the motivation
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of this work in more details, including related work of the
DIBR approaches. Recent research findings of correspondence
matching are also presented, since the rendering quality largely
depends on the accuracy of estimated depth maps. A prelimi-
nary version of this paper can be found at [7].

II. RELATED WORKS AND MOTIVATION

A. Correspondence Matching

Correspondence estimation between/among images is an
important and fundamental technique in a great variety of com-
puter vision applications. There are mainly two classes (global
methods and local methods) in correspondence matching [8].

Global methods find matching points between images by
reasoning a globally optimal solution of an energy functional
where the smoothness assumption is explicitly leveraged.
Many global optimization schemes have been adapted for
efficiently solving this NP-hard problem, e.g., belief propa-
gation [9]. Local methods compute correlation between points
with an assumption that all pixels in the matching window
have similar disparities. Among many local approaches, one
of the seminal works is the adaptive weight-based aggregation
method, proposed by Yoon and Kweon [10]. A support weight
at each point is computed according to range and spatial
distances between points. The depth accuracy is comparable
to that of other global methods, but it is computationally
expensive due to the nonlinear weight computation.

Recently, many leading local methods have been proposed,
especially focusing on yielding high-quality depth maps very
efficiently. Min and Sohn presented a multi-scale approach in
both image and cost domains for an efficient and reliable cost
aggregation [11]. Rhemann et al. applied the guided filter [12],
the complexity of which is independent of a matching window
size, as an alternative to the bilateral filter in the aggregation
step [13]. De-Maeztu et al. presented a geodesic diffusion-
based approach where weights as well as matching costs
are diffused (aggregated) so as to lower the computational
cost [14]. While most methods have concentrated on reducing
computational redundancies on an image resolution and a
window size, Min et al. improved both runtime efficiency and
accuracy of the stereo matching by compressing a search range
in the label space and regularly sampling neighbors used in
the matching window [15].

B. View Interpolation

Zhang et al. introduced an adaptive technique for inter-
polating an intermediate view [16]. Each reference view is
projected onto the plane of an intermediate view. Then, the
intermediate view was rendered by the weighted average
of these projected images. Min et al. synthesized a virtual
view by adapting a reverse warping instead of a forward
warping, which enables texture information to be sampled in
the viewpoint of the virtual camera, such that an appearance
of holes could be prevented [17]. Fitzgibbon et al. reformu-
lated the view synthesis problem as reconstructing the texture
corresponding to the virtual view, not a depth map [18].
Similar to this, Mahajan et al. interpolated a virtual view
based on the idea that the given pixel to be synthesized in

the virtual view traces out the path in reference images [19].
These methods are inherently based on a discrete formulation,
so holes inevitably occur which should be filled to ensure
high quality views. Recently, inspired by the image retargeting
technique, Lang et al. presented a warping-based rendering
scheme [20]. It is based on a continuous formulation similar
to the mesh-based rendering, thus free from a hole filling
problem. However, such warping process leads to geometric
distortion around man-made structures, e.g, lines or circles.

There have been many studies on analyzing and allevi-
ating the influence of erroneous depth information on view
interpolation. Yang et al. constrained the reliability of each
pixel in the virtual view via the maximum likelihood, so that
the influence of inaccurate depth data could be relaxed [6].
Nguyen and Do quantitatively analyzed a rendering quality
and derived error bounds by considering several factors such as
depth errors and the number of actual cameras [21]. Takahashi
quantitatively analyzed the effect of depth errors, leading to
an optimized view interpolation scheme from the perspective
of the mean-squared error metric [22]. Similarly, Zhao et al.
developed the depth no-synthesis-error (D-NOSE) model to
examine allowable depth distortions without incurring any
geometry distortion in the virtual view [2]. Kunita et al.
introduced the layered probability maps [23] for dealing with
depth ambiguities in the view interpolation. Although the
similar concept is used in the rendering process, this method
explicitly leverages the geometric prior such as a camera
position in order to avoid addressing an occlusion problem.
More specifically, when densely sampled color images (more
than 2) are given as inputs, intermediate view synthesis
results corresponding to a virtual camera are generated with
the input images in a probabilistic manner, and are then
adaptively combined using reliability values defined by a
baseline distance between real and virtual cameras. This fusion
approach based on the geometric prior is not suitable to
view synthesis using only two images with a relatively larger
baseline.

C. Problem Statement and Overview

Given two reference images, our objective is to synthe-
size a virtual view without deterministic correspondences.
By considering the rendering process as a probabilistic
re-sampling problem, we re-formulate it as an image fusion
process. In this context, the following problems should be
considered. First, how can the probability of all probable
matching points be constructed? Second, how can an interme-
diate view be rendered using a set of all matching candidate
points with the probability? To address these challenges, we
present the probability-based rendering (PBR) approach that
robustly reconstructs an intermediate view with the steady-
state matching probability (SSMP) density function.

1) SSMP: In our work, the matching cost, typically referred
to as a cost volume in the correspondence matching literature,
is re-defined as the probability of being matched between
points [15], enabling the random walk with restart (RWR) to
be applied to optimize the matching probability. The RWR
uses edge weights between neighboring pixels to enhance
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the matching probability similar to aggregation methods for
local stereo matching. In addition, it gives the meaningful
steady-state distribution of matching probability for each pixel,
so visually consistent results are guaranteed by employing
small number of adjacent neighbors only. It is worthy of noting
that if needed, a depth map can be simply obtained by selecting
a disparity label with a maximum matching probability. The
depth map shows a comparable performance to that of the
state-of-the-art local stereo matching methods.

2) PBR: The rendering process is re-formulated as an image
fusion, so that all probable matching points represented by the
SSMP can be considered together. The PBR has the following
advantages over the aforementioned DIBR methods. First, it
is more robust to depth distortions in that an intermediate
view is synthesized using a reliability (probability) based
fusion by the SSMP, not an explicit depth map which may
contain matching errors. Instead of simply calculating the most
probable matching point as a disparity value (hard decision)
and subsequently generating the virtual view with a single pair
of corresponding points only, we blend a set of the textures
of all the matching points (soft decision) according to their
probabilities (reliability). Moreover, it enables the PBR to be
effective in suppressing the flicker artifacts of virtual video.
Second, the intermediate view is free from a hole filling
problem since the SSMP considers all positions of probable
matching points. That is, the appearance of holes is inherently
prevented although the view interpolation is formulated in a
discrete sense. Third, it is not needed to explicitly handle
occlusion regions. Instead, the PBR handles occlusion areas
in a probabilistic manner, similar to the hole filling. Although
it does not give ground truth textures at occluded pixels,
the rendered results are visually more coherent on temporal
aspects than those of the DIBR method.

The remainder of this paper is organized as follows.
Section III describes new approach of inferring the SSMP.
Then, Section IV present our PBR method using the SSMP.
An extensive analysis of experimental results is presented in
Section V. Finally, conclusion and suggestions for future works
are given in Section VI.

III. SSMP WITH RWR

A. Matching Probability

Let Il(m) : � → R
3 and Ir (m) : � → R

3 be left and right
images defined on a discrete image domain where � ⊂ N

2 is
an open and bounded space with m = (m1,m2) ∈ � being
spatial coordinates. We also denote pt

l (m, d) and pt
r (m, d) as

the matching probability (MP) density functions of the left
and right images, respectively, where t is time and d is a
disparity hypothesis within a predefined search range. Without
loss of generality, let us assume that two reference images
are rectified, such that the probability pt

l (m, d) measures
how likely Il (m1,m2) is to be matched to Ir (m1 − d,m2)
and pt

r (m, d) does how likely Ir (m1,m2) to be matched to
Il(m1 + d,m2). From here on, we will describe the case of
pt

l (m, d) only, and denote it as pt (m, d) unless otherwise
specified.

In general, the probability is inversely proportional to the
cost and thus, an initial MP p0(m, d) can be calculated with

an initial matching cost e0(m, d) as follows.

p0(m, d) = 1

Z(m)
exp

{
−υe0(m, d)

}
, (1)

Z(m) =
∑

d
exp

{
−υe0(m, d)

}
, (2)

where a positive constant υ controls the shape of the MP, and
Z(m) represents a normalization term. Various metrics such
as the l p norm-based and gradient-based measure [13] can be
utilized to calculate e0(m, d).

B. Inferring Matching Probability With RWR

In this section, we estimate a SSMP using the RWR with
the initial one given in the previous section. The random walk
(RW) has been widely used to optimize probabilistic problems
[24], [25]. It has been known that the RW and the Laplacian
equation give the same solution [24], meaning that the steady-
state can be captured by the RW although it gives trivial
solutions, i.e., the steady-state solution of the RW is a constant
signal. Recently, the RWR has become increasingly popular,
since its restarting term gives the meaningful information in
the steady-state, allowing the global relation to be considered
at all scales [26], [27]. Therefore, the MP inferred with the
RWR gives the meaningful solution in the steady-state in
contrast to the conventional methods based on the RW, as will
be described in Section III-C.

A random walker iteratively transits to its neighboring
points according to an edge weight. Also, the random walker
goes back to the initial position with a restarting probability
α (0 ≤ α ≤ 1) at each iteration. A MP in the steady-state,
SSMP, can be obtained by the RWR in an iterative fashion as
follows:

pt+1(m, d) = (1 − α)

∑
n∈Nm

w(m,n)pt (n, d)∑
n∈Nm

w(m,n)
+ α p0(m, d),

(3)

where Nm denotes the 4-neighborhood of a reference pixel m.
Note that (3) becomes the RW when the restarting probability
is 0. With an assumption that neighboring pixels tend to have
similar MP when the range distance between the reference
pixel m and its neighboring pixel n is small, an edge weight
w(m,n) is computed as follows:

w(m,n) = exp

(
−‖Il (m)− Il(n)‖2

2

γ

)
, (4)

where γ represents the bandwidth parameter, typically set to
the intensity variance, and || · ||2 denotes l2 norm. Then, a
steady-state solution ps(m, d), referred as the SSMP in this
literature, can be obtained by iteratively updating (3) until
pt+1(m, d) = pt (m, d).

The significance of our work is as follows. First, only the
small number of adjacent neighbors (here, 4-neighborhood)
is needed to infer the MP, so the method does not require
specifying a window size for reliable matching as opposed to
the conventional aggregation methods. Second, our method is
free from specifying the number of iteration for meaningful
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solution, since it gives a nontrivial solution in the steady-
state. In contrast, the conventional methods give trivial steady-
state solutions, thus specifying a proper window size and/or
the number of iterations is very crucial to the performance.
In the following section, these limitations of the conventional
methods will be analyzed. Third, our method gives the optimal
solution for given energy functional, and it is also a non-trivial
SSMP, which will be described in detail in Section III-D.
As shown in recent studies [13], an edge-aware cost vol-
ume filtering is an excellent alternative to existing discrete
labeling techniques such as belief propagation [9]. Along this
perspective, the RWR-based method also has very desirable
properties (e.g., the number of parameters and optimality) in
diverse discrete pixel-labeling problems.

C. Limitations of Conventional Cost Aggregation in
Stereo Matching

The probability inference in (3) is conceptually related
to the cost aggregation commonly used in correspondence
matching, e.g., the probability inference with the RWR in (3)
becomes the adaptive weight method [10] by setting α = 0
and substituting the MP with the matching cost.

Specifically, let us consider an energy functional of the RW
as follows [24]:

ERW (p(m, d))

= 1

2

∑
m

∑
n∈Nm

(p(m, d)− p(n, d))2w(m,n) (5)

Since this energy functional is linear and strictly convex, a
global minimum is guaranteed. It has two types of solution,
each of which can be obtained via the steepest descent method
and the Gauss–Jacobi iteration, respectively.

1) Flow Solution: Since the derivative of the energy func-
tional is

∂ERW (p)

∂p
=

∑
n∈Nm

(p(m, d)− p(n, d))w(m,n), (6)

the flow solution with an initial condition p0(m, d) is obtained
using the steepest descent method after approximating a partial
derivative w.r.t time via the forward difference, as follows:

pt+1(m, d)

= pt (m, d)+�t
∑

n∈Nm
(pt (n, d)− pt (m, d))w(m,n),

(7)

where �t is an evolution step size. Interestingly, it is very
similar to the cost aggregation method of Min and Sohn [11]
by substituting the MP with the matching cost. Since (7) can
be seen as a type of diffusion, e.g., anisotropic diffusion [30],
the results of the probability inference or the cost aggregation
has no meaningful solution in an asymptotic state. Therefore,
the number of iterations t and an evolution step size �t should
be carefully tuned for a proper regularization.

2) Steady-State Solution: The steady-state solution is
given by

pt+1(m, d) =
∑

n∈Nm
w(m,n)pt (n, d)∑

n∈Nm
w(m,n)

, (8)

which corresponds to the adaptive weight approach [10].
It indicates that inferring a probability via the RW is the same
as the procedure of the adaptive weight method, which means
the adaptive weight method does not provide a meaningful
steady-state solution. This limitation can be remedied by
adjusting scale parameters, i.e., by restricting the number of
iterations and/or by enlarging a window size for considering as
many paths between two points as possible. It is, however, not
trivial to specify these parameters: there exist no theoretical
backgrounds to justify this.

In summary, the existing cost aggregation approaches share
the same origin with the RW, so there are several parameters
(e.g. iteration numbers and window size) to be carefully
tuned, which influence the computational complexity as well
as the accuracy. In contrast, in our method, after weight
w(m,n) is calculated using the bandwidth parameter γ as
in other aggregation methods, the accuracy depends on only
the restarting probability, α (see Fig. 5). It does not affect the
computational complexity. Furthermore, using 4-neighborhood
is sufficient in considering all paths and scales between points
in an asymptotic state without compromising accuracy.

D. Properties of the Solution (SSMP)

1) Non-Trivial Steady-State Solution: The probability infer-
ence with the RWR can be represented via the vector notation.
Let us denote a 2D slice corresponding to dth label at the MP
pt (m, d) as a M × 1 vector Pt

d where M is an image size.
Then, (3) is represented as follows:

Pt+1
d = (1 − α)D−1WPt

d + αP0
d = (1 − α)W̄P

t
d + αP0

d . (9)

The adjacency matrix W = [w(m,n)]M×M is normalized
as W̄ = D−1W, where D = diag(D1, . . . DM ) is a diagonal
matrix and Dm = ∑

n∈Nm
w(m,n). The steady state solution

Ps
d is obtained as [26]

Ps
d = α[I − (1 − α)W̄]−1P0

d = RP0
d , (10)

where I is a M × M identity matrix. R can be further
decomposed to an infinite geometric series:

R = α[I − (1 − α)W̄]−1 = α
∑t=∞

t=0
(1 − α)t W̄t . (11)

That is, R is a weighted sum of W̄t , whose element is a
probability that a random walker transits n to m after t itera-
tions. Thus, the RWR optimizes an initial MP by considering
all possible paths between two points.

2) Optimal Solution: Let us consider the following energy
functional [28].

ERW R(p(m, d))

= 1

2

∑
m

∑
n∈Nm

(p(m, d)− p(n, d))2w̄(m,n)

+λ
2

∑
m

(p(m, d)− p0(m, d))
2
, (12)

where λ > 0 is a regularization parameter and w̄(m,n) =
w(m,n)/

∑
n∈Nm

w(m,n) is a normalized weight. Note that a
particular case of the energy functional ERW R , i.e., w̄(m,n) =
w(m,n), was speculated in [29]. Since this energy functional
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is convex for the probability p(m, d), the global minimum of
the energy functional can be derived via the steepest descent
method as follows:

pt+1(m, d)

= 1

1 + λ

∑
n∈Nm

w(m,n)pt (n, d)∑
n∈Nm

w(m,n)
+ λ

1 + λ
p0(m, d). (13)

It gives the same solution as (3) when λ/(1 + λ) is equal
to the restarting probability α. Therefore, the steady-state
solution of (3) guarantees a global minimum of the energy
functional of (12) as well as is non-trivial. Note that in the
discrete labeling framework, (10) and (13) can be seen as a
semi-global solution in that it is a global minimum for the
specific d hypothesis only, i.e., an optimization within the
same disparity space, not over the disparity space [11].

IV. PBR WITH SSMP

A. PBR With SSMP

Now, the two reference images, Il (m) and Ir (m), and the
sets of their corresponding SSMPs, ps

l (m, d) and ps
r (m, d)

are given. It is worthy of noting that any other MPs can be
also applicable to the PBR, e.g., pt

l (m, d) and pt
r (m, d). We

cast the rendering process into the probabilistic image fusion.
In [25], a fusion of multi-exposure images was introduced
in a way that multiple reference images were sampled and
fused with the probabilities. Unlike this work, we consider an
image fusion where the reference images are not registered.
Therefore, for inferring probabilities, we should consider
perturbations, i.e., disparity candidate d , between reference
images.

Re-sampled textures: Let us assume that a baseline
between the left and right cameras is normalized to 1,
and 0 ≤ β ≤ 1 denotes the location of a virtual cam-
era. When the perturbation between images is d , I vl (m, d)
and I vr (m, d) describe color images re-sampled on the
virtual view from the left and right reference images,
respectively. That is, I vl (m, d) (I vr (m, d)) is a sub-sampled
point between Il (�m1 + βd	 ,m2) and Il(
m1 + βd� ,m2)
(Ir (�m1 − (1 − β)d	 ,m2) and Ir (
m1 − (1 − β)d� ,m2)),
where �x	 and 
x� denote the floor and ceiling functions,
respectively. Here, 2D point m is defined as (m1,m2). Note
that the view synthesis is performed based on the coordinate
of the virtual camera, not the reference camera, to prevent
the holes from occurring. Thus, the sampling position of the
pixel in the reference image is not an integer, so the pixel is
sub-sampled to avoid an aliasing artifact.

Matching probability: Pl(m, d) and Pr (m, d) encode the
matching probability of I vl (m, d) and I vr (m, d), respectively,
as follows:

Pl(m, d) = 1

Zl(m)
ps

l (< m1 + βd >,m2, d),

Pr (m, d) = 1

Zr (m)
ps

r (< m1 − (1 − β)d >,m2, d), (14)

where Zl(m) = ∑
d ps

l (< m1 + βd >,m2, d) and Zr (m) =∑
d ps

r (< m1 − (1 − β)d >,m2, d). < · > represents a
rounding operator. Note that unlike I vl (m, d) and I vr (m, d), the

matching probability of (14) is not sub-sampled since the sub-
sampling in the matching probability alters the properties of
the probability density function, whose sum over all variables
is always 1.

The virtual view Iv (m) is then synthesized via an image
fusion process. Specifically, a probabilistic average, El(Il(m))
and Er (Ir (m)), for two reference images are computed with
corresponding probability, Pl(m, d) and Pr (m, d), and the tex-
tures, I vl (m, d) and I vr (m, d), along the disparity hypothesis d
and then blended as follows:

Iv (m) = βEl(Il(m))+ (1 − β)Er (Ir (m))

=
∑

d
β I vl (m, d)Pl(m, d)+(1−β)I vr (m, d)Pr (m, d),

(15)

1) Comparison of PBR and DIBR: The PBR is closely
related to the conventional DIBR. Let us denote the left
and right disparity maps as dwl (m) and dwr (m), respectively,
each of which is warped to the virtual camera from the
reference camera. The sampled points I vl (m, d) and I vr (m, d)
is then converted as functions of m, I vl (m) and I vr (m),
respectively. That is, I vl (m) is a sub-sampled point between
Il(

⌊
m1 + βdwl (m)

⌋
,m2) and Il(

⌈
m1 + βdwl (m)

⌉
,m2). I vr (m)

is similarly defined.
Furthermore, the matching probability functions Pl(m, d)

and Pr (m, d) on the virtual camera coordinate is simplified as
a set of shifted Dirac delta function as follows:

Pl (m, d) =
{

1 d = dwl (m)
0 d �= dwl (m),

and

Pr (m, d) =
{

1 d = dwr (m)
0 d �= dwr (m).

(16)

Then, the PBR in (15) becomes

Iv (m) = β I vl (m)+ (1 − β)I vr (m), (17)

which is identical to the conventional DIBR except that the
function encoding the visibility of a pixel in the virtual view
is not explicitly used [17]. The PBR decides the pixel visibility
in a probabilistic manner instead, i.e., the visibility information
is implicitly embedded in Pl(m, d) and Pr (m, d) of (14)
in a way that a visible pixel is likely to have a higher
matching probability than an invisible pixel. We will show
in experimental results that such implicit handling method
can effectively suppress the rendering artifacts from depth
estimation errors.

Fig. 1 compares two approaches, the PBR and the DIBR.
Let us suppose that an intermediate view is rendered with
the left image only. With (a) the left reference image and
(b) the corresponding depth map and matching probability
map,1 the intermediate views (β = 0.5) were rendered via
(c) the DIBR and (d) the PBR. In the DIBR, no post-processing
was applied for fairly comparing their näive results. In order
to clearly exhibit error relaxation capability of the PBR, the
intermediate views were rendered with a severely degraded

1Note that the 3D matching probability map was not shown here.
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Fig. 1. A comparison of the PBR and the DIBR: with (a) the left reference image and (b) corresponding depth map and MP, intermediate views (β = 0.5)
were rendered via (c) the DIBR and (d) the PBR, respectively. The per-pixel MP p0

l (m, d) was used for rendering. In contrast to the DIBR with (f) the hard
decision, the PBR leverages (g) the soft decision, thus (h) the errors incurred by incorrect depth information are dispersed, and the hole regions do not occur.

MP, e.g., per-pixel raw MP p0
l (m, d). For fair comparison,

the depth map of Fig. 1(b) was obtained via the WTA using
p0

l (m, d). We could find that the rendered image of the PBR
visually outperforms that of the DIBR, even with a severely
degraded MP. More specifically, for a given fixed point m∗,
the PBR synthesizes the intermediate view Iv (m∗) with the
function of reference view I vl (m

∗, d) and the probability
Pl(m∗, d) as follows:

Iv (m∗) =
∑

d
I vl (m

∗, d)Pl (m∗, d).

In contrast, the DIBR renders the view Iv (m∗) with
the function of reference view and the warped disparity
I vl (m

∗, dwl (m
∗)) only:

Iv (m∗) =
∑

d
I vl (m

∗, d)Pl (m∗, d)

= I vl (m
∗, dwl (m

∗)).

Fig. 1(h) shows how two methods synthesize the intermedi-
ate view at m∗ with real measurements. It should be pointed
out that the PBR scheme is described with the viewpoint of
a virtual camera, not a reference camera. Namely, the set
of probability values, listed in the table of the PBR method
in Fig. 1(h), is not from a reference pixel m∗ on the left
image. These values are collected from different reference
pixels, e.g. {(x∗ + d, y∗)|d ∈ [0, 1, 2, . . . , D]} where m∗ =
(x∗, y∗) and D is a predefined search range. As in (16)
and (17), we described the DIBR after warping the (already
estimated) disparity dwl (m

∗) to the virtual camera. Thus, the
matching probability Pl(m∗, d) is 1 only at d = dwl (m

∗),
not d = arg maxd Pl(m∗, d). In fact, the left disparity value
dwl (m

∗) = 0 at m∗ is estimated by seeking the maximum
among the set of the probability values obtained by varying
the disparity d based on m∗ of the left image.
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Fig. 2. Examples of (a) occlusion and (b) dis-occlusion region. u4 and u5
( f7 and f8): occluded pixels in the left (right) image. v4 and v8: occlusion and
dis-occlusion (i.e., holes) in the virtual view. Il (u4) and Ir ( f8): the ground
truth texture at v4 and v8. In the PBR method, Il (u5) and Il (u9) in the left
image are likely to have the largest MP (contribution) values in rendering
I vl (v4) and I vl (v8), respectively. With the assumption that the background
texture smoothly varies, i.e., Il (u4) ≈ Il (u5) and Ir ( f8) ≈ Ir ( f7) ≈ Il (u9),
the PBR method yields visually pleasing textures (Il (u5) and Il (u9)) into the
holes, although they are not the ground truth textures. The rendering results
using the right image is also similar. Please refer to Section IV-B for more
details.

This figure demonstrates that wrong depth estimates
incurred by small errors on the MP seriously affect the view
rendering quality in the DIBR. For example, the rendered
texture of the virtual camera at m∗ is I vl (m

∗, dwl (m
∗) = 0) =

Il(m∗) as shown in Fig. 1(c). In contrast, the proposed proba-
bilistic fusion (i.e., a weighted sum using the MP) effectively
disperses such errors in the rendering process as shown in
Fig. 1(d).

Furthermore, since the PBR considers all probable matching
points, holes do not occur even at the occluded region.
Instead, the occlusion is implicitly handled. Detail analysis
on occlusion and dis-occlusion handling is presented in the
next section, and experimental results will be described in
Section V-C.

B. PBR Analysis on Occlusion and Dis-occlusion

In this section, we will describe how the PBR handles the
occlusion and dis-occlusion (hole) regions in a probabilistic
manner. Our method does not require the Z-buffer [31] for
depth ordering commonly used to handle occlusion in the
existing DIBR approaches. An underlying assumption for our
implicit occlusion handling and hole filling method is that the
background texture smoothly varies [18].

Let us suppose that the virtual view is synthesized using the
left image only. Fig. 2 shows two possible cases of occlusion
and dis-occlusion regions. The points u4 and u5 in the left
image and f7 and f8 in the right image describe pixels
occluded on the right and left images, respectively. The points
v4 and v8 in the virtual view depicts pixels to be filled in
occlusion and dis-occlusion regions, respectively. The dotted
lines denote the set of all probable matching points between

Fig. 3. Examples of temporal coherence in the virtual video rendering:
difference images between consecutive frames obtained by (a) the DIBR,
(b) the PBR and (c) the ground truth. It shows that the probabilistic blending
(soft decision) used in the PBR can effectively resolve temporal artifacts, e.g.,
‘flickering’ problem.

the reference images on the virtual camera coordinate. The
solid lines connect the most probable matching (visible) point
between images, meaning pixels with larger displacement
(black solid lines) and smaller displacement (grey solid line)
are likely to belong to the foreground and the background,
respectively.

1) Occlusion [Fig. 2(a)]: In the DIBR, the depth values at
occlusion regions (u4 and u5) are usually inferred from the
background depth at the depth estimation stage. Ideally, the
ground truth texture that should be filled in v4 is that of u4
in the left image. If there are no depth matching errors in the
DIBR, the ground truth texture (from u4) will be successfully
assigned into v4.

Now, let us examine how the PBR handles this case.
Consider the MPs of four pairs of points (linked with the
dotted line) between two reference images for v4 on the virtual
view. Two points u4 and u5, which are likely to be at the
background, are linked to the pixels at the foreground ( f4) and
the background ( f3) in the right image, respectively. Thus, the
point u5 is likely to have a higher MP than that of the point u4.
Other points (u6 and u7), belonging to the foreground in the
left image, are linked to the background pixels ( f2 and f1)
in the right image, resulting in low MPs. Accordingly, in
the weighted combination as in (15), the point u5 linked to
the background point f3 has the largest contribution on the
point v4. Thus, it can be said that our probabilistic handling
method does not give the ground truth texture at the occlusion.
It is because our method does not consider the geometric
constraint that occluded pixels tend to have a similar depth
to background pixels. However, the PBR yields reasonable
texture in the occlusion, assuming that the background texture
varies smoothly, I (u4) ≈ I (u5) [18]. In contrast, when there
exist depth estimation errors around the occlusion, visually
annoying artifacts often occur in the view synthesized using
the DIBR. It becomes even more serious on temporal aspects,
e.g., ‘flickering’ problem on the synthesized video. Fig. 3
shows simple examples showing the temporal artifacts are
effectively resolved in the proposed method.

2) Dis-occlusion [Fig. 2(b)]: Ideally, in the DIBR, the
ground truth texture for v8 is that of f8 in the right image,
when the occlusion is assumed to be perfectly handled in the
depth estimation stage.

In the PBR, the newly exposed region v8 is also filled in a
probabilistic manner. Similarly, we also assume four pairs of
linked points for v8 in the virtual view: one point exists at the
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foreground (u8), and the others do at the background (u9, u10,
and u11) in the left image. In this case, u9 has the highest
MP, since it is connected with the background pixel f7 in the
right image, meaning its texture is highly likely to be filled
with that of u9 linked with f7, whose texture is assumed to
be very similar to that of f8. Thus, similar to Fig. 2(a), one
can render a visually pleasing texture into the pixel v8, not a
ground texture. As mentioned earlier, such rendering scheme
is effective in suppressing the visual artifacts (e.g. flicker) of
virtual video rendering, since the texture is synthesized via the
probabilistic averaging process.

In the right image, the same process is applied except that
the occlusion and dis-occlusion regions exist in the opposite
direction to the case of the left image.

V. EXPERIMENTAL RESULT

We analyzed the performance of the proposed method
through various experiments with the Middlebury data
sets [32]. It is hard to perform a quantitative evaluation by
only speculating an inferred MP. Instead, we compared the
performance of depth estimation, assuming that a depth quality
gets higher as a MP is inferred better. A depth map d(m) was
simply calculated with the inferred SSMP or MP as in (18),
and was compared with that of state-of-the-art local stereo
matching methods in terms of the depth accuracy and the
number of parameters used:

d(m) = arg max
d

ps(m, d). (18)

Afterwards, the PBR with different MPs and the SSMP was
compared. Such evaluation clearly shows the effectiveness of
our proposed inference method. Namely, the SSMP produces
a high-quality MP even without specifying the window size
and the number of iterations, enabling virtual view synthesis of
reasonable quality. We also performed the view synthesis with
less accurate MP and its corresponding low-quality depth map,
inferred by the adaptive weight method [10]. The benefits from
the proposed PBR method are more emphasized in this chal-
lenging condition. Lastly, we compared our rendering scheme
with the DIBR approaches with various post-processing meth-
ods [5], [6]. Then, we will show that our PBR approach can
even further improve the rendering quality, especially around
depth discontinuities and occlusion. Furthermore, it will be
shown that the PBR is effective in reducing the flicker artifacts
of virtual video rendering significantly.

A. Experimental Environments and Implementation

As mentioned earlier, inferring MP is conceptually similar
to aggregating cost commonly used in the local stereo match-
ing methods. Thus, by employing the same initial MP (or cost),
we can easily and fairly compare the proposed method with
state-of-the-art local stereo methods: the adaptive weight (AW)
[10], the anisotropic diffusion (AD)2 [11], the cost filter (CF)
[13], and the geodesic diffusion (GD) [14].

2Note that the AD is not a main proposal of [11], but just a part of their
method.

Fig. 4. An inferred matching probability in Tsukuba image when the disparity
hypothesis is 0. With (a) an initial MP p0

l (m, 0), an optimal probability is
inferred by (b) the AW [10], (c) the CF [13], (d) the AD [11], (e) the GD
[14], and (f) the SSMP. The low intensity indicates high probability of being
matched, and vice versa.

For the left disparity estimation, we calculated an initial
matching cost e0

l (m, d) in (19), and then converted it into
the MP p0

l (m, d) of (1) with ν being set to 3000 in all
experiments:

e0
l (m, d) =

[
δ · min{||ψ(m, d)||1, σ1}
+(1 − δ) · min{||∇xψ(m, d)||1, σ2}

]
(19)

ψ(m, d) describes differences between Il(m) and
‘d’-shifted Ir (m), i.e., Il(m1,m2) − Ir (m1 − d,m2),
while ∇x and || · ||1 denote a gradient operator along a
horizontal direction and l1 norm, respectively. δ controls the
leverage between an intensity and a gradient term, and it was
set to 0.11. The truncation values σ1 and σ2 for handling
outliers [13] were set to 15 and 2, respectively.

Since the performance of conventional local stereo matching
methods largely depends on the window size and/or the
number of iterations, they were carefully set through intensive
experiments. The window size of the AW [10] and the CF [13]
was set to 35 × 35 and 19 × 19, respectively. The AD [11],
the GD [14] and the proposed method used 4-neighborhood.
For the AD, the number of iterations was set to 200 with the
step size being 0.01. In the GD, the number of iterations was
set to 18 [14]. The range bandwidth of the AD, the GD, and
the AW was set to 50. In the AW, the spatial bandwidth was
set equal to twice of the window size. Other parameters were
set equal to those of the original papers. The SSMP method
requires only two parameters, the range bandwidth γ and the
restarting probability α, and they were set to 50 and 0.003,
respectively. All the parameters were fixed in experiments,
unless otherwise specified. In the proposed method, the SSMP
was inferred via (10). The results of the CF were simulated
with the source code provided by the author [13]. Other
methods were performed with our own implementations.

B. SSMP

We first demonstrate the capability of inferring the MP.
Fig. 4 shows an initial MP p0

l (m, 0) and inferred probabil-
ity maps when a disparity hypothesis is 0. The AW [10]
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TABLE I

OBJECTIVE COMPARISON FOR THE AW [10], THE CF [13], THE AD [11],

THE GD [14], AND THE SSMP WITH VARYING A WINDOW SIZE

AND THE NUMBER OF ITERATIONS

shows better performance than the CF [13] in terms of
edge-preserving smoothing. However, in both methods, non-
smoothed texture regions are observed. The GD [14] localizes
the probability map better than the AD [11], but both methods
do not preserve the boundaries. In the SSMP, the texture
region is effectively smoothed as well as the boundary is well-
preserved.

1) Performance Analysis With Varying Parameters: To
explore the influence of the parameters on the matching algo-
rithms, we performed experiments by varying some parameters
in Table I. The window size varied from 3 × 3 to 35 × 35 in
the AW [10] and the CF [13]. The AD [11] and the GD [14]
were performed by varying the number of iterations. In the
AD [11] and the GD [14], the number in parentheses denotes
the number of iterations. In the CF [13] and the AW [10],
this means the diameter of the window. To demonstrate that
the performance of the conventional methods largely depends
on the parameters, we measured bad matching errors (%), i.e.,
the percentage of errors between estimated depth maps and the
ground truth, via the Middlebury test bed [32]. Note that the
bad matching error was measured only at non-occluded regions
(nonocc) for fair comparison. The shadow cell describes the
lowest error among parameters for each method. The dark cell
depicts the lowest depth error among all methods including the
SSMP method.

This table shows that the performance of the existing
methods except the AD is seriously influenced by the number
of iterations or the window size. The bad matching errors of
the AD and the AW are reduced by enlarging the window
size or increasing the iteration numbers. It, however, results in
drastically increasing the processing time. Although the AD
shows the smallest performance variation, the depth quality
is far from the state-of-the-art methods. The GD also shows
an acceptable quality. However, it is non-trivial to specify the
proper number of iterations. The performance of the CF largely
fluctuates, although it gives highly accurate results. Also, it
is hard to find out a suitable window size. In contrast, the

Fig. 5. The results of the SSMP with varying a restarting parameter α.
(a) 3 × 10−1, (b) 3 × 10−5, and (c) 3 × 10−7. The results get smoother as
the restarting probability α becomes smaller. When the random walker does
not return to the initial position, i.e., α = 0, the RWR gives trivial solution
in the steady-state, i.e., the RWR-based approach becomes equivalent to the
conventional RW-based approach.

Fig. 6. Results for (from top to bottom) Teddy and Cones [32] (a) left image,
(b) ground truth, and (c) depth maps obtained from the SSMP. The proposed
method provides high quality depth maps especially around depth boundaries,
although only 4-neighborhood is used for inferring matching probability. See
the Table II for an object comparison between the SSMP and other state-of-
the-art matching methods.

SSMP method does not need to specify the window size and
the number of iterations for the meaningful solution, since
it reaches an asymptotic state while considering all paths
between points with a fixed 4-neighborhood.

In the SSMP method, the restarting probability α is an
important parameter since it determines the degree of smooth-
ing of an initial MP. The results obtained with varying α
are shown in Fig. 5. The disparity results get smoother as
α becomes smaller, which implies that a random walker
rarely returns to the initial position. Note that when α = 0,
the proposed scheme becomes equivalent to the RW-based
methods such as the AW [10] and the AD [11], resulting in
a trivial solution in an asymptotic state as shown in Fig. 5(c).
As mentioned earlier, in our experiments, the restarting prob-
ability was fixed to 0.003.

2) Performance Analysis With Optimal Parameters: We
also performed additional experiments including the occlusion
handling. All the parameters for the AW [10], the CF [13], the
GD [14], and the AD [11] were carefully set through intensive
experiments for achieving the best performance. The left-right
consistency criterion [11] was used to detect outliers, followed
by a weighted median filter with default parameters [13].

Fig. 6 shows the results for (from top to bottom) Teddy
and Cones [32] obtained by the SSMP. Even though the
SSMP method uses a 4-neighborhood in inferring the matching
probability, high quality depth maps were provided, especially
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TABLE II

OBJECTIVE EVALUATION FOR THE SSMP WITH THE MIDDLEBURY TEST BED [32]

TABLE III

OBJECTIVE COMPARISON FOR THE PBR WITH THE AD [11],

GD [14], CF [13], AW [10], AND THE SSMP

around depth boundaries. For an object comparison, we evalu-
ated these methods in Table II according to three criteria: non-
occluded region (nonocc), all region (all), and discontinuous
region (disc). The symbol ‘*’ indicates the results of our
implementations. It shows that the SSMP shows competitive
results with state-of-the-art methods including global methods
denoted as the symbol ‘+’. The SSMP ranks second within
local methods followed by CrossLMF [33].

C. PBR

Next, we evaluate the performance of the PBR. An interme-
diate views were rendered with the left and right images, and
the PSNR and structural similarity (SSIM) index [34] were
measured with ground truth color images [32]: Tsukuba (from
the view point of 2 and 4 to that of 3), Venus/Teddy/Cones
(from the view point of 2 and 6 to that of 4), and
Art/Reindeer/Aloe/Cloth3 (from the view point of 1 and 5 to
that of 3). Furthermore, in the virtual video rendering, the
capability of the PBR for maintaining temporal coherence is
demonstrated with the MPEG sequences [35], [36]: Vassar
(from the view point of 0 and 2 to that of 1), BookArrival
(from the view point of 6 and 10 to that of 8), Poznan (from

Fig. 7. Intermediate views for the PBR with the SSMP. (From left to right,
and from top to bottom) Art, Reindeer, Aloe, and Cloth3 [32].

the view point of 3 and 5 to that of 4), and GtFly (from the
view point of 1 and 9 to that of 5).

1) Performance Analysis With different MPs and SSMP: As
mentioned earlier, the MPs can also be applicable to the PBR.
To validate this, we synthesized intermediate views via the
PBR with different MPs and the SSMP. Except for the SSMP,
all parameters needed for inferring MPs were set through
exhaustive searchs for achieving the best rendering results.
Table III compares the performance of the PBR with the
SSMP and MPs inferred from various methods [10], [11],
[13], [14]. It shows that the PBR can successfully render
intermediate views without handling the occlusion and dis-
occlusion regions as mentioned in Section IV-B. All methods
tend to give better results when sequences with relatively
simple geometry are used such as Venus and Cloth3. The PBR
with the SSMP method does not need to specify the window
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TABLE IV

OBJECTIVE COMPARISON FOR THE DIBR [5], [6], [17] AND THE PBR WITH THE AW [10]

size and the number of iterations for inferring the proba-
bility as shown in Section V-B. Nevertheless, it achieved
the comparable performance to the PBR with other MPs, in
which optimal parameters were estimated through intensive
experiments for obtaining the best rendering quality. Fig. 7
shows examples of virtual views synthesized by the PBR
with the SSMP. In the following sections, we will show the
superiority of the PBR over the DIBR for various image and
video sequences.

2) Comparison to DIBR With Still Images: To verify the
performance of the PBR more deeply, the intermediate views
were rendered via the PBR and the DIBR with MPs and its
corresponding depth maps, obtained by the AW [10] using an
aggregation window with varying sizes: AW(1), AW(7), and
AW(21). Note that AW(1) can be seen as using an initial raw
MP with no aggregation.

Table IV shows an objective comparison for the DIBR [17]
including various post-processing methods [5], [6] and the
PBR with the AW [10]. It shows average PSNR and SSIM
scores for eight image sequences used in Section V-C-1). The
results rendered with the depth maps, where the occlusion
is handled, are denoted as ‘DIBR(Occ)’, and ‘DIBR(NOcc)’
otherwise. The results of the DIBR inherently have hole
regions in contrast to the PBR. ‘DIBR(Occ+POST1)’ denotes
the results after interpolating such hole regions: 1) The depth
maps are warped onto the virtual camera. 2) The holes in
the warped depth maps are then interpolated with a simple
median filtering for a dense photometric sampling. 3) The
virtual view is synthesized through a backward warping.
4) Finally, the interpolation on hole regions, which may exist
in the synthesized view, is executed. That is, the interpolation
technique is used in both warped depth maps and synthe-
sized views. ‘DIBR(Occ+POST2)’ denotes the results after
reducing the rendering errors in a way that artifacts caused by
unreliable pixels from one reference image are replaced with
the reliable ones from another reference image [5]. We also
compare our results with ‘DIBR(Occ+POST3)’ which con-
strains the reliability of each pixel in the sense of maximizing
likelihood [6].

There are four observations. First, the post processing
is inevitably needed in the DIBR. Averagely, it achieves
7.77 (dB) PSNR gain compared to the results without the
hole filling, e.g., DIBR(Occ) and DIBR(Occ+POST1) using
AW(1). Second, enlarging the window size improves the
performance of all methods, since it increases the quality of
the MP and the depth map. Although some post-processing
methods [5], [6] relax the rendering error to some extent, they
are not effective in rendering with a low quality depth and

Fig. 8. Intermediate views of Cones [32] for (a) the DIBR(NOcc),
(b) the DIBR(NOcc+POST1), (c) DIBR(Occ), (d) DIBR(Occ+POST1), and
(e) the PBR with (from left to right) the AW(1), the AW(7), and the AW(21),
respectively. Although the PBR implicitly handle the occlusion and dis-
occlusion regions, it show the sharp transition around the boundaries in
contrast to the DIBR. Furthermore, the PBR is more powerful when the low
quality MP is given, since it relaxes the errors from local minima. See the
Table IV for the object comparison.

a relatively high quality depth, i.e., the depth maps obtained
by AW(1) and AW(21). Third, the PSNR gain of the PBR
over the DIBR becomes more remarkable as the window
size becomes smaller, i.e., the PSNR gains of the PBR over
the DIBR(Occ+POST1) [17] are 1.66 (dB) in AW(1), and
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Fig. 9. (a) Intermediate views for (from left to right) 169th , 170th , and 171th frames of Vassar sequences rendered by (from top to bottom) the
DIBR(Occ+POST1), the PBR, and the ground truth, respectively. (b) the difference images between consecutive sequences corresponding to (a). The soft
decision in the PBR reduces temporal noises and flickering artifacts in the rendered video, maintaining temporal coherence compared to the DIBR.

TABLE V

OBJECTIVE COMPARISON FOR THE DIBR(OCC+POST1) [17]

AND THE PBR WITH VIDEO SEQUENCES

0.88 (dB) in AW(7). It indicates that the PBR is more powerful
when the low-quality MP is employed. Fourth, the occlusion
handling significantly reduces the hole regions, i.e., the results
of the DIBR(Occ) [17] show better performance than those of
the DIBR(NOcc) [17], since wrong depth values in the occlu-
sion make pixels of the reference images warped to wrong
positions, eventually causing many holes. However, when the
post-processing is applied with the low-quality depth maps
of AW(1) and AW(7), the occlusion handling does not work
well. Comparing the results of the DIBR(NOcc+POST1) [17]
and DIBR(Occ+POST1) [17], the methods with an occlusion
handling sometimes produces even worse rendered results. It
is because an accurate detection and a handling of occluded
regions are very hard in case of using severely degraded depth
maps, so lots of rendering errors still exist. We can also find
these phenomena visually in Fig. 8(b) and (d), which shows
view synthesis results of Cones. In contrast, the results of
the PBR always show a sharp transition at the boundary even
with a low quality MP, thanks to the capability of effectively
handling matching outliers. Therefore, we can conclude that
as stated in Section IV-B, although the PBR does not provide
a ground truth texture in the occluded regions, it can be an
excellent alternative when serious errors exist in the depth
maps, which is very common in practical environments.

3) Comparison to DIBR With Video Sequences: The above
argument is even more strongly supported in the virtual video
rendering. The soft decision in the PBR relaxes temporal
artifacts, which is a significant problem in the conventional
DIBR caused by inconsistent depths in the temporal domain.
To verify this, we synthesized virtual videos using the DIBR
and the PBR with the sequences provided by the MPEG [35],
[36]: Vassar, BookArrival, Poznan and GtFly. The depth maps
and the MPs were inferred by the AW with a fixed aggregation
window size, i.e., AW(31).

Fig. 9(a) shows examples of synthesized views for 169th,
170th, and 171th frames of Vassar sequences rendered by
(from top to bottom) the DIBR(Occ+POST1) [17], the
PBR, and the ground truth, respectively. For observing the
temporal fluctuation, difference images between consecu-
tive frames were obtained by (from top to bottom) the
DIBR(Occ+POST1) [17], the PBR, and the ground truth,
respectively as shown in Fig. 9(b). It demonstrates that some
temporal artifactes such as ‘flicker’ problem can be success-
fully resolved by the PBR. One interesting observation is
that the PBR handled even the artifacts in the original video.
Namely, it can be seen that the temporal noise in the ground
truth color video was also reduced in the video rendered by
the PBR, since the soft decision in the PBR enables the scene
to be smoothly varied without any temporal reasoning, e.g.,
optical flow.

The temporal coherence was measured for an objective
evaluation as follows [37]:

F = 1

MT

∑
m

T∑
t=1

Ft (m)

Ft (m) = max{0, |I vt (m)− I vt−1(m)| − |Rt (m)− Rt−1(m)|}
(20)

where M and T denote the image size and the total number of
sequences, respectively. I vt (m) and Rt (m) are the synthesized
view and the ground truth view at time t , respectively. The F
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Fig. 10. The flutuation measure F for synthesized videos rendered by the
DIBR(Occ+POST1) and the PBR. (a) Vassar, (b) BookArrival, (c) Poznan,
and (d) GtFly. It is shown that the PBR can drastically reduce the temporal
artifacts compared to the DIBR, enforcing temporal coherence.

Fig. 11. The textures from the foreground and the background are mixed if
the smoothness assumption of the background texture is not valid, e.g., thin
object, making such objects transparent in the synthesized view. (See thin
wooden sticks.)

value measures the temporal coherence with the just noticeable
difference for the flicker artifacts |Rt (m) − Rt−1(m)|, and is
highly correlated with an actual viewing experience [37]. The
low F value means that the synthesized video is temporally
coherent, and has low flickering artifacts, and vice versa.
Fig. 10 demonstrates that the PBR can drastically reduce
the temporal artifacts compared to the conventional DIBR.
Table V shows a numerical comparison between the DIBR
and the PBR for average PSNR, SSIM, and F values of entire
sequences. The PSNR and SSIM gains of the PBR over the
DIBR seem relatively low, since they are measured for whole
images, e.g., including textureless regions, which are hard to
verify the quality of the rendering results. But, it is noteworthy
that the PBR decreases the fluctuation degree (F ) near 50%
compared to the DIBR. All the rendering results can be found
at [38].

4) Limitation: Although the PBR gives reasonable render-
ing results, some problems still occur at the regions such
as thin objects where the smoothness assumption of the
background texture is not valid. In these regions, the textures

from the foreground and the background are mixed, since
two modes for the foreground and the background in the MP
may often have similar quantities. It makes the objects in the
synthesized view transparent, e.g. thin wooden sticks in the
Art sequence of Fig. 11.

VI. DISCUSSION AND CONCLUSION

We have described the PBR method for the robust recon-
struction of a high-quality intermediate view. Two main issues
were addressed: The first is how the optimal MP is inferred.
After reformulating the cost aggregation into the probability
optimization, we applied the RWR to obtain the SSMP, which
always guarantees a meaningful solution in the steady-state
unlike RW or filtering-based methods. The second is how the
intermediate view is robustly rendered with the SSMP or MP.
Motivated by the observation that all pixels in the intermediate
view come from reference images, we formulated a rendering
process as an image fusion in a way that the intermediate
view is rendered by adaptively blending textures of all possible
matching pixels. Thus, the PBR method using a soft decision
effectively addresses the errors which might be incurred by
an inaccurate depth estimation. The intensive experiments
demonstrated that the PBR is superior to the DIBR in both
qualitative and quantitative manners. It is also free from the
dis-occlusion (hole filling) and occlusion problems. Though
our method does not render a ground truth texture on the
occluded pixels, rendered results are visually more coherent
on temporal aspects than those of the DIBR method.

The procedure of the PBR is parallel and thus, it can be
efficiently implemented via the parallel processing unit such
as the graphic processing unit (GPU). Furthermore, the frame
rate up-conversion is fundamentally similar to the intermediate
view rendering, i.e., it also consists of the correspondence
matching and rendering stages dealing with a 2D displacement
vector. We will generalize the proposed scheme to more com-
plicated problem, e.g., the frame rate up-conversion and the
virtual video rendering on a non-parallel camera configuration.
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