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Depth Superresolution by Transduction
Bumsub Ham, Member, IEEE, Dongbo Min, Member, IEEE, and Kwanghoon Sohn, Senior Member, IEEE

Abstract— This paper presents a depth superresolution (SR)
method that uses both of a low-resolution (LR) depth image
and a high-resolution (HR) intensity image. We formulate depth
SR as a graph-based transduction problem. In particular, the
HR intensity image is represented as an undirected graph, in
which pixels are characterized as vertices, and their relations
are encoded as an affinity function. When the vertices initially
labeled with certain depth hypotheses (from the LR depth image)
are regarded as input queries, all the vertices are scored with
respect to the relevances to these queries by a classifying function.
Each vertex is then labeled with the depth hypothesis that
receives the highest relevance score. We design the classifying
function by considering the local and global structures of the
HR intensity image. This approach enables us to address a
depth bleeding problem that typically appears in current depth
SR methods. Furthermore, input queries are assigned in a
probabilistic manner, making depth SR robust to noisy depth
measurements. We also analyze existing depth SR methods in
the context of transduction, and discuss their theoretic relations.
Intensive experiments demonstrate the superiority of the pro-
posed method over state-of-the-art methods both qualitatively
and quantitatively.

Index Terms— Depth super-resolution, active range sensor,
transduction, graph regularization.

I. INTRODUCTION

SENSING an accurate depth image is a fundamental task
in computer vision and image processing, and recently

its importance has been on the rise in numerous applications,
including image-based rendering and 3D object modeling.
Besides, the depth image can be used in various ways, to
tackle challenging problems, e.g., scene labeling [1], object
detection [2], tracking [3], and visual saliency [4]. It is because
depth information provides a decisive clue, making several
tasks much easier to address, while facilitating more accurate
and efficient solutions.

A number of depth sensing methods have been introduced.
In a static scene, a laser range scanner or an active illumination
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with structured light is the best way for capturing an accurate
depth image [5], but they are applicable at controlled envi-
ronments only. Alternatively, the depth image is estimated
through a computational approach, i.e., by finding corre-
spondences between images. In the initial phase, its perfor-
mance was very far from practical usage due to an enormous
computational complexity and an unstable estimation quality.
The performance of correspondence matching algorithms has
been significantly improved, but many challenges still remain,
e.g., sensitivity to lighting conditions. An active range sensor
such as a time-of-flight (ToF) camera is an alternative to
acquiring depth information. The ToF camera captures the
distance between a sensor and an object by measuring a phase
delay between emitted and received light waves. It provides
dense depth measurements at video rate, and can be used in
dynamic environments. Nevertheless, an actual application has
been impeded by inherent physical limitations of the sensor –
the acquired depth image is of relatively low-resolution (LR),
and is corrupted by a huge amount of noise.

There have been many attempts to enhance the resolution
and accuracy of the depth image obtained from the
ToF camera. Previous works on depth super-solution (SR)
can be generally categorized into two groups (depth guided
methods and intensity guided methods), according to whether
or not a high-resolution (HR) intensity image is used. The first
approach stems from classical SR techniques: a spatial resolu-
tion is enhanced by combining multiple LR depth images [6].
To avoid using multiple images, one can use a dictionary-based
approach using registered and paired HR/LR depth images [7].
Although this approach works well even in case that multiple
LR depth images are not available, tens of thousands of ground
truth depth images are required to build a training data set. The
second approach exploits a HR intensity image as a depth cue.
It assumes that there exist co-occurrence statistics between
depth and intensity discontinuities [8]–[23]. The additional
intensity image helps align depth boundaries to intensity edges,
but this may cause the textures in the intensity image to
be transferred to the depth image. More importantly, this
type of method using the intensity image prevents a sharp
depth transition at depth discontinuities [7]. Such a drawback,
a depth bleeding problem, can result in jagged artifacts in
scene reconstruction [7].

This paper presents a sensor fusion approach to enhanc-
ing the spatial resolution of the depth image. Our approach
belongs to the second category: LR depth and HR intensity
images are jointly used to reconstruct a fine quality depth
image. The main contributions of this work are as follows:

• We view depth SR as a labeling task, and formulate it as a
graph-based transduction problem. This approach avoids
the depth bleeding problem by considering the local and
global structures of the intensity image.
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• We design an indication matrix that leverages the property
of a noisy depth image, making depth SR robust to
incorrect depth measurements.

• We present a comprehensive review of existing depth
SR methods, analyze them in the context of transduction,
and discuss their theoretic relations.

The remainder of this paper is organized as follows. Section II
describes related works for depth SR and transduction.
Section III analyzes current depth SR methods and describes
the proposed method in detail. An extensive analysis of
experimental results is then presented in Section IV. Finally,
conclusion and discussion are given in Section V.

II. RELATED WORK

In this section, we review recent works related to the
proposed method: intensity guided depth SR and transduction.

A. Intensity Guided Depth SR

Intensity guided depth SR methods can be further classified
into three categories: filtering-based methods, optimization-
based methods, and cost aggregation-based methods.

1) Filtering-Based Methods: This type of method applies
a filtering operation to the depth image under guidance of
the HR intensity image. That is, the LR depth image is
regularized with a weight function that is calculated from the
HR intensity image. This indicates that conventional filtering
schemes can be utilized to depth SR. It is worth mention-
ing that this joint filtering scheme has been employed in a
variety of image processing tasks, e.g., colorization and tone
mapping [8]. One of the seminal works is the joint bilateral
upsampling (JBU) [8] that applies the bilateral filter [24] to
a target signal under guidance of another signal. Since then,
many filtering-based methods have been proposed, e.g., using
fast edge-preserving filters such as guided filter (GF) [9] and
geodesic filter [20].

2) Optimization-Based Methods: Optimization-based meth-
ods enhance the spatial resolution of the depth image by
minimizing an objective function that commonly consists
of data and regularization terms. Diebel and Thrun used a
MRF framework, where the regularization term is penalized
in accordance with texture derivatives [13]. The weighted
least square (WLS) framework has been popularly utilized
by formulating the regularization term accordingly [16], [17].
For examples, Park et al. modeled the regularization term
based on segmentation and edge saliency. A nonlocal means
regularization term was additionally involved, which results in
protecting thin structures. Ham et al. regarded depth SR as a
label propagation task, and solved it with a random walk with
restart (RWR) framework [22]. Ferstl et al. formulated depth
SR as a convex optimization problem using a higher order
regularization term, enforcing a piecewise affine solution [18].
Note that these optimization-based methods can be thought
of as one type of filtering-based methods where the global
structure of the HR intensity image is considered [9].

3) Cost Aggregation-Based Methods: Cost aggregation-
based methods perform depth SR in a label domain, not an
image domain itself. That is, these methods construct a 3D cost

volume using a current depth value, and then perform an
adaptive smoothing independently for each 2D cost layer,
similar to the cost aggregation step in a local correspondence
matching algorithm [19]. Yang et al. [11], [12] aggregated
each of 2D cost slice by using the bilateral filter [24].
Min et al. proposed the weighted mode filter (WModF) that
computes a mode from a joint histogram computed with a
set of input measurements within a local window, improv-
ing the depth accuracy significantly [14]. The weighted
median filter (WMedF) [19] and nonlocal weighted median
filter (NMedF) [23] were recently employed to depth SR,
which addresses a limitation of using a local mean filter,
e.g., the bilateral filter [24].

B. Transduction

Transduction aims to infer a classifying function for labeled
and unlabeled data, from which the labels of the unlabeled data
are predicted. It is highly related to manifold ranking in that
manifold ranking is an extreme case of transduction, where
only a single label is available [25]. Transduction or man-
ifold ranking has been employed to numerous applications,
e.g., web page ranking [26], clustering [27], image segmenta-
tion [28], [29], image retrieval [30], and visual saliency [31].
Recently, transduction was also applied to an image inter-
polation task [32]. In this work, intensity values from a
LR input image are considered as labeled data, and the
interpolation is performed using a transductive regression.
Similar to WLS [16], [17] and RWR [22], an objective
function defined on an intensity domain is minimized to
estimate continuous labels (intensity values). In contrast, we
regard depth SR as a transductive classification, i.e., a discrete
labeling task. The objective function is defined for each depth
hypothesis, and is minimized to find the classifying function.
This function labels each pixel in the HR intensity image with
a discrete label among a set of depth hypotheses. Moreover,
we introduce a novel indication matrix – a confidence matrix,
which makes transduction robust to incorrect initial label
assignments. In [32], the initial labels of LR samples are fixed,
and thus transduction is not robust to noisy data. To the best
of our knowledge, our approach first attempts to explicitly
employ the transductive classification in depth SR.

III. DEPTH SR BY TRANSDUCTION

In this section, we first analyze the problems of conventional
intensity guided depth SR methods, and then describe the
proposed method in detail.

A. Analysis of Current Depth SR Methods

1) Limitations: Fig. 1 shows a visual comparison of
intensity guided depth SR methods: 1) filtering-based methods,
(c) GF [9], 2) optimization-based methods, (d) RWR [22] and
(e) anisotropic total generalized variation (ATGV) [18], and
3) cost aggregation-based methods, (f) NMedF [23],
(g) WModF [14], and (h) the proposed method. Although
they provide visually pleasing results, there still remain some
matters to iron out, so-called depth blurring and depth bleeding
artifacts.
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Fig. 1. Visual comparison of intensity guided depth SR methods: given (a) the HR intensity image, (b) the LR depth image is upsampled by 1) filtering-
based methods, (c) GF [9], 2) optimization-based methods, (d) RWR [22] and (e) ATGV [18], and 3) cost aggregation-based methods, (f) NMedF [23],
(g) WModF [14], and (h) the proposed method. We formulate depth SR as a discrete labeling problem similar to cost aggregation-based methods. In contrast
to conventional cost aggregation-based methods (e.g., WModF), both local and global structures of the intensity image are taken into account in the proposed
method, providing convincing results without depth bleeding artifacts at depth boundaries. Note that optimization-based methods (e.g., RWR and ATGV) also
consider the global structure of the intensity image, but they regularize the LR depth image itself; thus, depth bleeding artifacts are still observed around
object boundaries.

We differentiate the depth bleeding from the depth blurring,
although they show similar behaviors. The depth blurring
refers to over-smoothing of depth discontinuities. It cor-
responds to halo artifacts that appear in local filtering
methods [9], and most filtering-based depth SR methods suffer
from depth blurring artifacts as shown in Fig. 1 (c). This
problem could be alleviated by choosing an appropriate kernel
function. Alternatively, we can reduce depth blurring artifacts
by using a global optimization scheme as in optimization-
based methods [9], or by performing depth SR in a label
domain as in cost aggregation-based methods. The depth
bleeding refers to the leak of depth information, and it is
caused by blurry boundaries in the intensity image.1 The depth
bleeding artifacts may be reduced by considering depth values
as discrete variables, not continuous variables (as in filtering-
based and optimization-based methods) and formulating depth
SR as a discrete labeling problem, like cost aggregation-based
methods. Cost aggregation-based methods give relatively good
results, but depth bleeding artifacts are still observed around
object boundaries as shown in Fig. 1 (f) and (g).

2) Motivation: Let us consider a toy example for depth SR
as shown in Fig. 2 (a). The vertices correspond to 5D feature
vectors of the HR intensity image consisting of spatial location
and color. Let us assume that the vertices in the shapes of
circle and moon belong to two different depth hypotheses,
i.e., a red circle and a blue cross. The task is to label
each vertex in the intensity image with given sparse depth
hypotheses. Most cost aggregation-based methods infer the
depth hypothesis by considering the local structure of the
intensity image only, through a weighted averaging filter [11],
a weighted median filter [19], or a weighted mode filter [14].

1The edges in the intensity image may be smoothed when captured due to
several factors, e.g., aerial scattering.

Fig. 2. Toy example for depth SR. (a) 5D feature vectors of the HR intensity
image and sparse depth hypotheses, described by a red circle and a blue cross,
respectively, (b) labeling guided by a local structure only, and (c) labeling
guided by local and global structures. Let us assume that the vertices in
the shapes of circle and moon belong to two different depth hypotheses.
The task is to infer the depth hypothesis of each vertex in the intensity
image with given sparse depth hypotheses. The current cost aggregation-based
methods consider the local structure of the intensity image only. Such a local
aggregation strategy is insufficient to capture the underlying structure of the
intensity image. This causes depth bleeding problems, i.e., an inaccurate depth
value is penetrated into neighboring regions with a different depth hypothesis.
In contrast to this, intrinsic structures can be captured by exploiting the global
structure of the intensity image. (Best viewed in color).

Such a local aggregation strategy is insufficient to capture the
underlying structure of the intensity image, resulting in depth
bleeding artifacts2; an inaccurate depth value is thus penetrated
into neighboring regions with a different depth hypothesis, as
shown in Fig. 2 (b). This type of problem has been well studied
in the context of transduction [33], and has been addressed by
designing a suitable classifying function with reference to the
underlying structure.

Inspired by this literature, we formulate depth SR as a
graph-based transduction problem. Namely, it is formulated
as a discrete labeling task similar to cost aggregation-based
methods, but we exploit both local and global structures of

2An efficient nonlocal cost aggregation method was recently proposed using
a tree structure, and it was applied to NMedF [23]. NMedF uses a global
aggregation, but the tree structure may fail to fully capture local image
attributes. This causes depth leakage artifacts as shown in 1 (f).
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the intensity image, mitigating depth bleeding artifacts, as
in Fig. 2 (c). The vertices (pixels) in the HR intensity image
are labeled with an assumption that nearby vertices are likely
to have similar depth hypotheses, and vertices on the same
structure are likely to have similar depth hypotheses [33].
It is worth pointing out that although optimization-based
methods also consider the global structure of the intensity
image, there still exist depth bleeding artifacts, as shown
in Fig. 1 (d) and (e). In contrast, our labeling approach,
guided by both local and global structures of the inten-
sity image, achieves the best upsampling results, as shown
in Fig. 1 (h).

B. Transduction for Depth SR

1) Problem Statements: Let us assume that HR intensity
and LR depth images are registered with a size of
n and p (< n), respectively. Specifically, the LR depth image
is initially warped to the HR intensity image, such that p points
in the HR intensity image are labeled with reference to the
depth values of the LR depth image, and (n − p) points in the
HR intensity image remain invalid.

Concretely, given a set of vertices in the HR intensity image,
X = (Xl ,Xu) = {x1, ..., x p, x p+1, ..., xn}, some vertices xi

(i ≤ p) in Xl are labeled as yi ∈ L where L = {1, ..., c},
i.e., a set of depth hypotheses with a maximum depth value c.
We aim to predict the depth hypotheses (labels) of unlabeled
vertices x j (p + 1 ≤ j ≤ n) in Xu with labeled ones in Xl .
This can be achieved by measuring the relevance of each
unlabeled vertex to the labeled vertices, and by labeling it
with the depth hypothesis that receives the highest relevance
score [25]. Depth SR then boils down to designing a scoring
function (or a classifying function).

2) Graph Construction: Let us represent the HR intensity
image as an undirect graph G = (V, E), where V is a set of
vertices on the data set X and E is a set of links. An undirected
edge Eij ∈ E exists if two vertices xi , x j ∈ V are adjacent.
In our work, a local 4-neighborhood system is used. The local
structure is encoded as an affinity function Wij ∈ W , where
W is a set of n ×n matrices with nonnegative elements, and it
is computed based on the distance between adjacent vertices
as follows.

Wij = exp
{
−d2(gi , g j )

}
xi , x j ∈ V, (1)

where d(gi , g j ) : X × X → R is a metric that measures
the similarity of features between vertices. Various features
including spatial location, intensities, and textures can be used
to represent the distinctiveness of vertices. For simplicity,
we use Euclidean distance between color values as
follows.

d(gi , g j ) = ∥∥gi − g j
∥∥

2/
√

2σ, (2)

where σ is a range bandwidth. gi represents the color values of
a vertex xi in the Lab space, and ‖·‖2 denotes l2 norm. Then,
affinity and corresponding degree matrices of the graph G can
be described as W = [Wij ]n×n and D = diag{D1, ..., Dn}
where Di = ∑n

j=1 Wij .

3) Confidence Matrix: The n × c indication matrix Y ∈ F
is introduced to identify initial label assignments where
F represents a set of n × c matrices with nonnegative
elements. The simplest way of constructing the indication
matrix Y = [Y T

1 , ..., Y T
n ]T is to set Yi j = 1 if a vertex xi

is labeled as yi = j where j ∈ L, and Yi j = 0 otherwise [33].
That is, the indication matrix has valid values only when the
vertex xi is labeled as a certain depth hypothesis j ∈ L from
the initial sparse depth measurements. This works well in
case that all the initial label assignments are correct, but the
depth image captured by the active range sensor is typically
contaminated by sensory noise.

Considering the potential errors of the initial depth image,
we design the indication matrix in a probabilistic way, such
that each element in the matrix can be varied according to the
noisy level in the initial depth image, not being fixed to the
binary value (1 or 0). We call this matrix as a confidence
matrix. When a vertex xi is labeled with a certain depth
hypothesis yi = j from the initial sparse depth measurements,
the confidence matrix is defined by assigning probability
values to remaining probable depth hypotheses as follows:

Yik

=
{
max(1 − δ | j − k| , 0) yi≤p = j, j − ηc ≤ k ≤ j +ηc
0 otherwi se,

(3)

where a constant δ controls the shape of the function, and
η is a parameter for the noise variance. It can be seen that when
η is zero, the confidence matrix in (3) becomes conventional
indication matrix, i.e., Yi j = 1 only when a vertex xi is labeled
as yi = j .

4) Classifying Function: Let F = [FT
1 , ..., FT

n ]T ∈ F be a
n × c matrix that plays a role of classifying a vertex xi on the
data set X , by which each vertex xi is labeled as yi , in such
a fashion yi = arg max j≤c Fi j . That is, the hypothesis of the
highest rank among a set of depth hypotheses is selected as a
depth value at the vertex xi .

The classifying function F generally meets the following
conditions [33]: first, a good classifying function refrains
from alternating labels from initially assigned ones. Second,
it should not change too much between nearby vertices, and
sufficiently smooth with accordance to the underlying structure
captured by the intensity image. Finding the classification
function can be formalized by energy minimization, and the
first and second constraints are modeled as data and regular-
ization terms, respectively, as below:

Q1(F) = μ

n∑
i=1

‖Fi − Yi‖2 +
n∑

i, j=1

Wij

Di

∥∥Fi − Fj
∥∥2

, (4)

where μ (0 < μ < 1) is a regularization parameter that
balances data and regularization terms. There exist many
ways to design an energy function for transduction, and a
comprehensive review can be found at [34] in the context
of image retrieval. It is worth noting that this approach is
different from optimization-based methods (see [22]), in that
energy minimization is done with respect to the classifying
function F in a label domain, whereas optimization-based
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methods minimize an energy function with respect to the depth
value itself in an image domain.

In (4), it is assumed that all the initial labels equally con-
tribute to the classifying function. Recall that, in the previous
section, the initial labels are identified by the confidence
matrix to authorize the robustness to noisy data. Similarly, let
us suppose that we have prior knowledge about the confidences
of initial labels. The different scores can then be assigned
to the initial labels by the analogy of their respective confi-
dences [25]. We assume that a distinct region such as edges
and corners give relatively more reliable information than a
homogeneous region. This assumption is modeled by using a
degree value Di , since it implicitly describes a property of
the neighborhood of a vertex xi , e.g., the degree value of a
distinct region is smaller than that of a homogeneous region.
This observation is encoded in (4), leading to a new energy
function:

Q2(F) = μ

n∑
i=1

∥∥Fi − Dm
i Yi

∥∥2 +
n∑

i, j=1

Wij

Di

∥∥Fi − Fj
∥∥2

. (5)

The constant m determines the degree of confidences on
initial labels, and it is set to −1/2 in our work, enabling a
distinct region to have a relatively higher confidence than a
homogeneous region.

5) Numerical Solution: The classifying function can be
found by minimizing the energy function Q2(F) within a
domain F :

F� = arg min
F∈F

Q2(F). (6)

In matrix/vector form, the energy function as in (5) can be
rewritten as

Q2(F) = μ(F − D− 1
2 Y)

T
(F − D− 1

2 Y) + FT(I − D−1W)F,

(7)

where I represent a n × n identity matrix. Since (7) is linear
and strictly convex, a global minimum is guaranteed, and it
can be obtained by differentiating Q2(F) with respect to F as
follows.

∂Q2(F)

∂F

∣∣∣∣
F=F�

= μF − μD− 1
2 Y + F − D−1WF = 0. (8)

It is rewritten as,

F� + μ

1 + μ
D− 1

2 Y − 1

1 + μ
D−1WF� = 0. (9)

When α is substituted with 1/(1 + μ) in (9), then

(I − αD−1W)F� = (1 − α)D− 1
2 Y. (10)

The following relation can then be derived, from which the
relevance scores between labeled and unlabeled vertices are
obtained.

F� ∝ (I − αD−1W)−1D− 1
2 Y. (11)

Note that the inverse matrix (I −αD−1W)−1D− 1
2 encodes the

local and global structures of the intensity image [9], [33].
Note also that this matrix can be considered as an implicit
affinity (kernel) function [9]. Namely, (11) is equivalent to

Algorithm 1 Depth SR by Transduction

implicitly filtering each column of the confidence matrix Y
by the inverse matrix (I − αD−1W)−1D− 1

2 .
The proposed depth SR method is summarized

in Algorithm 1.
6) Computational Complexity: The main computational

cost of the proposed method comes from solving the linear
system of (11), which involves matrix inversion and multipli-
cation. The n × c confidence matrix Y can be decomposed
into independent n × 1 vectors, and this enables splitting the
linear system of (11) into c linear equations. For solving
each linear equation, general dense direct solvers such as
Gaussian elimination and LU factorization accompany O(n3)
complexity. Since we use a 4-neighborhood system, several
sparse direct solvers can be used to solve our sparse liner
equations. We use the direct solver in MATLAB, by which
each sparse linear equation can be solved with O(n1.5)
complexity [35]. Accordingly, the total cost of solving the
linear system of (11) is O(cn1.5).3 It is computationally
expensive compared to other methods, e.g., O(n) in GF [9]
and O(cn) in WMedF [19]. Several sparse solvers have been
recently proposed [35], [36], which are highly efficient and
have a linear O(n) complexity; thus, the complexity of solving
the linear system of (11) can be reduced to O(cn) by using
these solvers. Since the c linear equations can be solved in
parallel, the linear system of (11) can be further efficiently
solved by using a parallel processing unit.

7) Links With Graph Cut and Gaussian Random Fields:
a) Graph cut: When the classifying function takes discrete
values, e.g., Ln = {1, ..., c}n, not continuous (probability)
values, minimizing the energy function of (4) becomes the
following combinatorial problem:

F� = arg min
F∈Ln

Fi=Yi onXl

FT�F. (12)

� is the random walk Laplacian:

� = D− 1
2 (I − S)D

1
2 , (13)

where S = D− 1
2 WD− 1

2 . This combinatorial optimization
problem can be efficiently solved by multi-label graph-cut
algorithm [37].

b) Gaussian random fields: When the regularization
parameter μ approaches to infinity, the objective func-
tion of (4) reduces to the Gaussian random fields [38],

3Current un-optimized MATLAB implementation on 2.5 GHz CPU takes
about 3.4 seconds to upsample a depth image of size 384 × 288 when the
number of depth hypotheses is 16.
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TABLE I

TRANSDUCTIVE VIEWPOINT OF DEPTH SR METHODS

keeping the smoothness term only. The classifying function
can be found by forcing Fi = Yi for xi ∈ Xl as follows:

F� = arg min
F∈F

Fi=Yi onXl

Q1(F) . (14)

Note that the optimal classifying function F� is a harmonic
function.

C. Transductive Viewpoint of Depth SR

The proposed method casts depth SR as a discrete labeling
problem, which is closely related to the cost aggregation-
based methods. It is also associated with the filtering-
based and optimization-based methods, in that kernel-based
regularization is employed. In the context of transduction,
we investigate intensity guided depth SR methods with
three steps: designing confidence and kernel matrices, and
determining labels. For example, our method labels each
vertex xi as yi = arg max j≤c Fi j , with the kernel matrix

H = (I − αD−1W)−1D− 1
2 and the confidence matrix Y of (3).

Here, the classifying function can be represented as a product
of kernel and confidence matrices, i.e., F = HY. Table I shows
a classification of depth SR methods from the viewpoint of
transduction.

1) 3D JBU: The 3D JBU [11] defines the confidence matrix
in a manner similar to our method as

Yik =
{
max (1 − δ | j − k| , 0) yi≤p = j, 1 ≤ k ≤ c
0 otherwi se,

(15)

and decides each depth hypothesis by yi = arg max j≤c Fi j .
The kernel matrix is designed by the affinity function used
in the bilateral filter [24] as in (16). This matrix considers
the local structure of the intensity image only, which leads to
depth bleeding artifacts.

Hij = exp
{
−d2(gi , g j ) − d2

s (i, j)
}

xi , x j ∈ V, (16)

where

ds(i, j) = ‖i − j‖2√
2σs

. (17)

σS is a spatial bandwidth.
2) NMedF and WMedF: The confidence matrix of

NMedF [23] and WMedF [19] are allocated as in (18).

Yi j =
{
1 yi≤p = j
0 otherwi se.

(18)

Although the performance of these methods may be altered
according to the quality of the initial depth image, NMedF [23]
and WMedF [19] are robust to noisy data. The main reason
is that they determine the depth hypothesis by selecting a
median value, i.e., yi = median j≤cFi j , and the median
value – optimal with respect to the L1 norm minimization – is
generally robust to outliers. The kernel matrix of NMedF [23]
is defined with the local affinity function as in (19), but
it considers a nonlocal neighborhood by connecting distant
pixels.

Hij = exp
{−dL1(gi , g j )

}
xi , x j ∈ V, (19)

where

dL1(gi , g j ) =
∥∥gi − g j

∥∥
1

σ
. (20)

The kernel matrix of WMedF [19] is defined with the affinity
function from the local filter, e.g., GF [9] as in (21), which
causes depth bleeding artifacts.

Hij = 1

|N |2
∑

l:(i, j )∈N

(
1 + (gi − μl)(	l + τ I)−1(g j − μl)

)
,

(21)

where N is a neighborhood of the vertex l, and |N | is the
number of vertices in N . 	l is a 3 × 3 covariance matrix,
and μl is a 3 × 1 mean vector of gl in N . The constant τ is
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TABLE II

OBJECTIVE EVALUATION OF DEPTH SR METHODS ON THE MIDDLEBURY TEST BED [39]

a regularization parameter that determines the smoothness of
the kernel matrix. Please refer to [9] for more details.

3) WModF: The WModF [14] defines the confidence matrix
as in (22), endowing with the robustness to noisy data.

Yik =
{
exp {−δ | j − k|} yi≤p = j, 1 ≤ k ≤ c
0 otherwi se.

(22)

The depth hypothesis is determined in such a fashion
yi = arg max j≤c Fi j ; thus, the resulting depth image is more
sharper than that determined by the mean operation that
is widely used in the filtering-based and optimization-based
methods as in (24). However, depth bleeding artifacts are still
observed as the kernel matrix used in WModF as in (16)
considers the local structure of the intensity image only.

4) RWR: The RWR [22] constructs the confidence matrix
as in (18).4 Nevertheless, its performance does not vary
depending on the noise level due to the kernel matrix used
in RWR:

Hij = (I − αD−1W)−1. (23)

This method determines a depth value through an adaptive
summation over depth hypotheses with the corresponding
classifying function as follows.

yi =
∑

L j Fi j∑
L Fij

. (24)

This type of decision rule based on L2 norm minimization
alleviates the influence of noisy data.

5) JBU and GF: The JBU [8] and GF [9] determine depth
values by an adaptive summation as in (24), and thus they are
robust against noisy data. Both methods use the confidence
matrix as in (18), and differ only in designing kernel matrices;
(16) for JBU and (21) for GF. Thus, the global structure of the
intensity image is not taken into account, resulting in depth
bleeding artifacts.

4The filtering-based methods including implicit approaches, such as an
optimization-based filtering, can be formalized with a joint histogram [14].
Each bin in the joint histogram is filled with the value from a given
kernel function, which corresponds to the classifying function for transduction.
Thus, computing the joint histogram can also be modeled as a product of
kernel and confidence matrices. The RWR, JBU, and GF construct each bin
with a delta function δ(·), which leads to the confidence matrix as in (18).
Please refer to [14] for more details.

Fig. 3. Average rank of each method according to the error rate in Table II.
Cost aggregation-based methods tend to have a better performance than other
methods, among which the proposed method gives the superior performance.

IV. EVALUATION

We analyze the performance of our method through various
experiments with both synthetic and real-world examples. The
Middlebury benchmark data set [39] provides HR intensity
images and ground truth depth images. We can synthesize
LR depth images by downsampling ground truth depth images,
and evaluate the proposed method quantitatively. The exper-
iment has also been conducted with depth images acquired
from the ToF camera.

A. Experimental Environments

The proposed method requires four parameters – σ for
the graph construction, δ and η for the confidence matrix,
and α for the classifying function, and they are set
to 60, 0.01, 10/c, and 0.999, respectively. All the parameters
are fixed in experiments, unless otherwise specified.
To demonstrate the performance, the bad matching
error (%) [40] is measured, i.e., the percentage of erroneous
pixels, as follows.

B = 1

n

∑
(|DC − DT | > ε), (25)

where ε is a depth error tolerance. DC and DT represent
upsampled depth and ground truth depth images, respectively.

We compare the proposed method with state-of-the-art
methods including GF [9], RWR [22], ATGV [18],
WMedF [19], WModF [14], and NMedF [23]. As described
earlier, these methods are classified into three categories:
filtering-based methods, optimization-based methods, and
cost aggregation-based methods. Hereafter, we call them
(F), (O), and (C), respectively, e.g., (F) GF. All the results
have been obtained with the source codes provided by
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Fig. 4. Visual comparison of upsampled depth images with the Middlebury benchmark data set [39]. Snippets of (from top to bottom) Teddy, Art, Dolls,
Laundry, and Moebius: (a) the HR intensity image, (b) bilinear interpolation, (c) GF [9], (d) ATGV [18], (e) NMedF [23], (f) the proposed method,
and (g) the ground truth. Depth bleeding artifacts appear in all types of methods, expect for the proposed method.

the authors, and parameters for these methods have been
carefully set through intensive experiments for achieving
the best performance. In WModF [14], the multiscale color
measure (MCM) has been employed to reduce aliasing
artifacts. It is shown in [14], [18], [22], and [23] that
the upsampling methods that use the bilateral filter [24]
have exhibited worse performance than the above-mentioned
methods, and thus the results obtained with such methods
as JBU [8] and 3D JBU [11] are not shown here. All the
results can be found at the project webpage.5

B. Performance Evaluation With Synthetic Examples

We demonstrate the performance of the proposed method
with synthetic examples from the Middlebury benchmark data
set [39]: Tsukuba, Venus, Teddy, Cones, Art, Books, Dolls,
Laundry, Moebius, and Reindeer. The LR depth image is
synthesized by downsampling a ground truth image with a
factor of 8 in each dimension, and the corresponding color
image is used as the HR intensity image.

Table II summarizes the bad matching errors with a
tolerance ε = 1. They have been measured at all regions (all)
only, except when the ground truth index map for discontinu-
ous regions (disc) is available. The top three methods yielding

5http://www.di.ens.fr/%7Ebham/depthsr/

low depth errors among all methods are marked with a shadow;
the less the method gives error, the darker the cell gets.
The proposed method outperforms other state-of-the-art
methods, especially around depth discontinuities. This is
consistent with our analysis that the proposed method
successfully preserves depth boundaries, and it is free from
depth bleeding artifacts.

Fig. 3 shows an average rank of each method with respect
to the error rate in Table II. As expected, the proposed method
yields the best performance. Cost aggregation-based methods
tend to have a better performance than other types of methods,
and optimization-based methods outperform filtering-based
methods. Interestingly, a simple bilinear interpolation shows a
better performance than some filtering-based and optimization-
based methods, although its subjective quality looks worse
than these methods (see depth discontinuities in Fig. 4(b)).
Filtering-based and optimization-based methods use regular-
ization operators explicitly or implicitly under guidance of
the intensity image, and this often causes texture-copying
artifacts.6 Bilinear interpolation, however, does not suffer from

6In intensity guided depth SR methods, the texture in the intensity image
may be transferred to the depth image. It is because discontinuities in the
intensity image include both of depth and texture edges, but most of the
existing methods cannot differentiate depth discontinuities from texture edges.
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Fig. 5. Synthesized views of (from top to bottom) Teddy and Dolls. They are rendered with the HR intensity image and corresponding upsampled depth
images from (a) GF [9], (b) ATGV [18], (c) NMedF [23], (d) the proposed method, and (e) the ground truth. The rendering results of the proposed method
are superior to those of other methods. Note that depth bleeding artifacts introduced by (a) GF [9], (b) ATGV [18], and (c) NMedF [23] cause warping several
pixels in the synthesized view to the wrong location, e.g., the left side of teddy bear.

Fig. 6. Examples of upsampled depth images with the ToF camera: (a) the HR intensity image, (b) bilinear interpolation, (c) GF [9], (d) RWR [22],
(e) ATGV [18], (f) NMedF [23], (g) WModF [14], and (h) the proposed method. Most methods alleviate sensor noise by propagating it to other regions. Note
that conventional cost aggregation-based methods, including (f) NMedF [23], show similar performances to other types of methods in noisy environments.
In contrast, the proposed method shows the superior performance, solving the most critical problems in conventional methods.

these artifacts, since the HR depth image is estimated by
using the LR depth image only, not utilizing the intensity
image.

Fig. 4 shows the results of three types of methods,
(F) GF [9], (O) ATGV [18], (C) NMedF [23], and (C) the
proposed method. This figure clearly shows the behavior of
these methods: filtering-based methods undergo depth bleeding
artifacts at depth discontinuities. Optimization-based methods
consider the global structure of the intensity image, leading to
better results, but depth bleeding artifacts are still witnessed.
Cost aggregation-based methods yield sharper depth bound-
aries than other types of methods, but still suffer from depth
bleeding artifacts. NMedF [23] aggregates nonlocal informa-
tion very efficiently by performing edge-aware smoothing in
a tree structure approximated from 2D image grid. Such an
approximation of an image grid using a tree structure, however,
may fail to fully capture local image attributes, thus leading

to depth leakage artifacts. For example, the tree may connect
distant pixels along a line when they have similar color values
(e.g., Teddy, Art, and Laundry). The proposed method can be
regarded as one of cost aggregation-based methods, and both
local and global structures of the intensity image are also taken
into account, providing very convincing results. It is worth
noting that the cost aggregation-based methods, including our
approach, can be seen as a discrete labeling approach, so the
resulting depth image is inherently quantized. This artifacts
can be alleviated by the quadratic fitting [11].

To visualize the influence of depth errors, virtual views are
synthesized with the HR intensity image and corresponding
upsampled depth images as shown in Fig. 5. As stated earlier,
all methods except the proposed method suffer from depth
bleeding artifacts, warping several pixels in the virtual view
to the wrong location, e.g., the left side of teddy bear.
In contrast, the synthesized view of the proposed method
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Fig. 7. Examples of (top) upsampled depth images and (bottom) point cloud scene reconstructions of Devil in the Graz data set [18]. They are rendered
with the HR intensity image and corresponding depth images from (a) bilinear interpolation, (b) GF [9], (c) RWR [22], (d) ATGV [18], (e) NMedF [23],
(f) WModF [14], (g) the proposed method, and (h) the ground truth.

TABLE III

AVERAGE PSNR AND SSIM VALUES OF THE VIRTUAL

VIEWS SYNTHESIZED WITH UPSAMPLED

DEPTH IMAGES IN TABLE II

shows the sharp depth transition. Table III shows average
PSNR and SSIM values [41] of the virtual views synthesized
with the upsampled depth images in Table II.

C. Performance Evaluation With Real-World Examples

We have simulated upsampled depth images with the
ToF camera. For this configuration, we have used Mesa Imag-
ing SR4000 [42] and Point Grey Flea camera [43] to capture
LR depth images (176 × 144) and corresponding HR intensity

images (512 × 384). They have been registered by warping
depth values to the coordinate of the intensity image with
calibration parameters. As shown in Fig. 6 (b), the depth image
is degraded by various types of sensor noise. Fig. 6 shows the
results of filtering-based methods, (c) GF [9], optimization-
based methods, (d) RWR [22] and (e) ATGV [18], and cost
aggregation-based methods, (f) NMedF [23], (g) WModF [14],
and (h) the proposed method. Although most methods reduce
sensor noise relatively well, some severe outliers in the
LR depth image are propagated, e.g., blue dots in Fig. 6 (b),
degrading the quality of the upsampled depth image. On the
contrary, the proposed method shows the superior perfor-
mance, addressing the most critical problems in conventional
methods – it shows sharp depth discontinuities without depth
bleeding artifacts. Note that our method and RWR [22] use
a similar optimization formulation. The difference is that the
proposed method minimizes the energy function with respect
to relevance scores (in a label domain), while RWR [22] does
with respect to depth values (in a depth domain).

Recently, Ferstl et al. have introduced a benchmark
data set consisting of LR depth images captured by the
ToF camera and ground truth depth images acquired from
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TABLE IV

OBJECTIVE COMPARISON OF DEPTH SR METHODS

ON THE GRAZ DATA SET [18]

Fig. 8. Influence of the confidence matrix on smoothness of the resulting
depth image: (a) η = 0, (b) η = 100/c. The parameter η determines the degree
of smoothness in the upsampled depth image. Specifically, the resulting depth
image is more regularized as η increases, indicating that there exists a trade
off between the degrees of smoothness and sharpness.

structured light [18]. Table IV shows the quantitative
evaluation of depth SR methods on the Graz data set [18].
This table shows that the proposed method always outperforms
other state-of-the-art methods. Existing cost aggregation-based
methods show similar performances to other types of meth-
ods in noisy environments. In NMedF [23], an aggregation
is performed on the whole surface with a fronto-parallel
assumption. This is problematic on textureless slanted surfaces
(e.g., Devil and Shark), and every pixel in these surfaces
has the same disparity value (see Fig. 7. (e)). The subjective
comparison can be found in Fig. 7. As expected, the proposed
method gives convincing results without depth bleeding arti-
facts. As mentioned earlier, cost aggregation-based methods
including our method consider depth values as discrete labels,
and thus they are inherently quantized in contrast to filtering-
or optimization-based methods. The smoothed depth images
of Fig. 7 (b), (c) and (d) might look better especially at
slanted surfaces, but such a smoothing also causes depth
bleeding artifacts and even depth blurring artifacts at object
boundaries. These artifacts produce undesirable results with
highly noticeable jagged artifacts in scene reconstruction.

D. Influence of Confidence Matrix on Depth Smoothness

As previously stated, the proposed method defines the
confidence matrix Yi j with the probability that the vertex xi is

TABLE V

CLASSIFICATION OF STATE-OF-THE-ART DEPTH SR METHODS

labeled as yi = j . The parameter η of Y in (3) determines a
degree of smoothness in the upsampled depth image, as shown
in Fig. 8. As the parameter η increases, the relevance score
between vertices is more regularized, making neighboring
vertices have similar scores. This indicates the parameter η
can be adjusted to deal with noise that may exist in the
initial depth image, and should be set properly to balance the
degrees of smoothness and sharpness in the upsampled depth
image.

V. DISCUSSION AND CONCLUSION

We have described the intensity guided depth SR method.
We have principally resolved the depth bleeding problem
in current depth SR methods. Depth SR was regarded as a
discrete labeling task, and was then formulated as a graph-
based transduction problem. We have compared our approach
with a large number of state-of-the-art methods through syn-
thetic and real-world examples. Experimental results have
shown that cost aggregation-based methods tend to achieve
a better performance than filtering-based and optimization-
based methods. The proposed method upsamples the LR depth
image in a way similar to the cost aggregation-based method,
yet the global structure of the intensity image is considered.
Our method outperforms existing approaches in terms of both
qualitative and quantitative evaluations. The comparison of
several depth SR methods is summarized in Table V.
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